Advertisement

Microbial Transformation of Trace Elements in Soils in Relation to Bioavailability and Remediation

  • Nanthi S. BolanEmail author
  • Girish Choppala
  • Anitha Kunhikrishnan
  • Jinhee Park
  • Ravi Naidu
Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 225)

Abstract

The term “trace elements” generally includes elements (both metals and metalloids) that occur in natural and perturbed environments in small amounts and that, when present in sufficient bioavailable concentrations, are toxic to living organisms (Adriano 2001). This group includes both biologically essential [e.g., cobalt (Co), copper (Cu), chromium (Cr), manganese (Mn), and zinc (Zn)] and nonessential [e.g., cadmium (Cd), lead (Pb), and mercury (Hg)] elements. The essential elements (for plant, animal, or human nutrition) are required in low concentrations and hence are known as “micro nutrients.” The nonessential elements are phytotoxic and/or zootoxic and are widely known as “toxic elements” (Adriano 2001). Both groups are toxic to plants, animals, and/or humans at exorbitant concentrations (Alloway 1990; Adriano 2001). Heavy metal(loid)s, which include elements with an atomic density greater than 6 g cm#3 [with the exception of arsenic (As), boron (B), and selenium (Se)] are also considered to be trace elements.

Keywords

Microbial Transformation Toxic Trace Element Dimethyl Selenide Humic Acid Fraction Dimethyl Diselenide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The Postdoctoral fellowship program (PJ008650042012) at National Academy of Agricultural Science, Rural Development Administration, Republic of Korea, ­supported Dr Kunhikrishnan’s contribution.

References

  1. Achá D, Hintelmann H, Yee J (2011) Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region. Chemosphere 82:911–916CrossRefGoogle Scholar
  2. Achá D, Iñiguez V, Roulet M, Guimarães JRD, Luna R, Alanoca L, Sanchez S (2005) Sulfate-­reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with Hg methylation. Appl Environ Microbiol 71:7531–7535CrossRefGoogle Scholar
  3. Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  4. Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142CrossRefGoogle Scholar
  5. Ahalya N, Ramachandra T, Kanamadi R (2003) Biosorption of heavy metals. Res J Chem Environ 7:71–79Google Scholar
  6. Akagi H, Malm O, Branches FJP, Kinjo Y, Kashima Y, Guimares TRD, Oliveira RB, Haraguchi K, Pfeiffer WC, Takizawa Y, Kato H (1995) Human exposure to mercury due to gold mining in the Tapajos River Basin, Amazon, Brazil: speciation of mercury in human hair, blood and urine. Water Air Soil Pollut 80:85–94CrossRefGoogle Scholar
  7. Al Rmalli SW, Dahmani AA, Abuein MM, Gleza AA (2008) Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.). J Hazard Mater 152:955–959CrossRefGoogle Scholar
  8. Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, San Diego, CAGoogle Scholar
  9. Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265CrossRefGoogle Scholar
  10. Allard B, Arsenie I (1991) Abiotic reduction of mercury by humic substances in aquatic system—an important process for the mercury cycle. Water Air Soil Pollut 56:457–464CrossRefGoogle Scholar
  11. Alloway B (1990) 2 Soil processes and the behaviour of metals. In: Alloway BJ (ed) Heavy metals in soils. Blackie and Son Ltd., GlasgowGoogle Scholar
  12. Alves M, Gonzalez BCG, De Carvalho GR, Castenheira JM, Pereira SMC, Vasconcelos LAT (1993) Chromium removal in tannery wastewaters—polishing by Pinus sylvestris bark. Water Res 27:1333–1338CrossRefGoogle Scholar
  13. Amoozegar MA, Ghasemi A, Razavi MR, Naddaf S (2007) Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp. strain MF2. Process Biochem 42:1475–1479CrossRefGoogle Scholar
  14. Anand P, Isar J, Saran S, Saxena RK (2006) Bioaccumulation of copper by Trichoderma viride. Bioresour Technol 97:1018–1025CrossRefGoogle Scholar
  15. Anderson LCD, Bruland KW (1991) Biogeochemistry of arsenic in natural waters: the importance of methylated species. Environ Sci Technol 25:420–427CrossRefGoogle Scholar
  16. Aposhian HV, Zakharyan RA, Avram MD, Kopplin MJ, Wollenberg ML (2003) Oxidation and detoxification of trivalent arsenic species. Toxicol Appl Pharmacol 193:1–8CrossRefGoogle Scholar
  17. Apte AD, Tare V, Bose P (2006) Extent of oxidation of Cr (III) to Cr (VI) under various conditions pertaining to natural environment. J Hazard Mater 128:164–174CrossRefGoogle Scholar
  18. Aryal M, Ziagova M, Liakopoulou-Kyriakides M (2010) Study on arsenic biosorption using Fe (III)-treated biomass of Staphylococcus xylosus. Chem Eng J 162:178–185CrossRefGoogle Scholar
  19. Azaizeh HA, Gowthaman S, Terry N (1997) Microbial selenium volatilization in rhizosphere and bulk soil from a constructed wetland. J Environ Qual 26:666–672CrossRefGoogle Scholar
  20. Bachate SP, Khapare RM, Kodam KM (2012) Oxidation of arsenite by two β-proteobacteria isolated from soil. Appl Microbiol Biotechnol 93:2135–2145CrossRefGoogle Scholar
  21. Bäckström M, Dario M, Karlsson S, Allard B (2003) Effects of a fulvic acid on the adsorption of mercury and cadmium on goethite. Sci Total Environ 304:257–268CrossRefGoogle Scholar
  22. Bae W, Wu CH, Kostal J, Mulchandani A, Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180CrossRefGoogle Scholar
  23. Bahlmann E, Ebinghaus R, Ruck W (2006) Development and application of a laboratory flux measurement system (LFMS) for the investigation of the kinetics of mercury emissions from soils. J Environ Manage 81:114–125CrossRefGoogle Scholar
  24. Baker MD, Inniss WE, Mayfield CI (1983) Effect of pH on the methylation of mercury and arsenic by sediment microorganisms. Environ Technol Lett 4:89–100CrossRefGoogle Scholar
  25. Banks M, Schwab A, Henderson C (2006) Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere 62:255–264CrossRefGoogle Scholar
  26. Bañuelos GS, Li ZQ (2007) Acceleration of selenium volatilization in seleniferous agricultural drainage sediments amended with methionine and casein. Environ Pollut 150:306–312CrossRefGoogle Scholar
  27. Baralkiewicz D, Gramowska H, Gołdyn R, Wasiak W, Kowalczewska-Madura K (2007) Inorganic and methyl-mercury speciation in sediments of the Swarzędzkie Lake. Chem Ecol 23:93–103CrossRefGoogle Scholar
  28. Barnhart J (1997) Chromium chemistry and implications for environmental fate and toxicity. Soil Sediment Contam 6:561–568CrossRefGoogle Scholar
  29. Battaglia-Brunet F, Dictor MC, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P (2002) An arsenic (III)‐oxidizing bacterial population: selection, characterization, and performance in reactors. J Appl Microbiol 93:656–667CrossRefGoogle Scholar
  30. Bender J, Lee RF, Phillips P (1995) A review of the uptake and transformation of metals and metalloids by microbial mats and their use in bioremediation. J Ind Microbiol 14:113–118CrossRefGoogle Scholar
  31. Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Estimation of mercury-sulfide speciation and bioavailability in sediment and porewaters. Environ Toxicol Chem 18:951–957CrossRefGoogle Scholar
  32. Berman M, Bartha R (1986) Levels of chemical versus biological methylation of mercury in sediments. Bull Environ Contam Toxicol 36:401–404CrossRefGoogle Scholar
  33. Bhandari N, Reeder RJ, Strongin DR (2011) Photoinduced oxidation of arsenite to arsenate on ferrihydrite. Environ Sci Technol 45:2783–2789CrossRefGoogle Scholar
  34. Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, Eastern India: options for safe drinking water supply. Int J Water Resour Dev 13:79–92CrossRefGoogle Scholar
  35. Bishnoi NR, Kumar R, Kumar S, Rani S (2007) Biosorption of Cr (III) from aqueous solution using algal biomass Spirogyra spp. J Hazard Mater 145:142–147CrossRefGoogle Scholar
  36. Bisinoti MC, Junior E, Jardim WF (2007) Seasonal behavior of mercury species in waters and sediments from the Negro River Basin, Amazon, Brazil. J Braz Chem Soc 18:544–553CrossRefGoogle Scholar
  37. Biswas KC, Barton LL, Tsui WL, Shuman K, Gillespie J, Eze CS (2011) A novel method for the measurement of elemental selenium produced by bacterial reduction of selenite. J Microbiol Methods 86:140–144CrossRefGoogle Scholar
  38. Blowes DW, Ptacek CJ, Jambor JL (1997) In-situ remediation of Cr (VI)-contaminated groundwater using permeable reactive walls: laboratory studies. Environ Sci Technol 31:3348–3357CrossRefGoogle Scholar
  39. Bluskov S, Arocena J, Omotoso O, Young J (2005) Uptake, distribution, and speciation of chromium in Brassica juncea. Int J Phytoremediation 7:153–165CrossRefGoogle Scholar
  40. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351CrossRefGoogle Scholar
  41. Bogdanova E, Minakhin L, Bass I, Volodin A, Hobman JL, Nikiforov V (2001) Class II broad-­spectrum mercury resistance transposons in gram-positive bacteria from natural environments. Res Microbiol 152:503–514CrossRefGoogle Scholar
  42. Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N (2011) Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv Agron 110:1–75CrossRefGoogle Scholar
  43. Bolan NS, Adriano DC, Natesan R, Koo BJ (2003a) Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J Environ Qual 32:120–128Google Scholar
  44. Bolan NS, Adriano DC, Naidu R (2003b) Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Rev Environ Contam Toxicol 177:1–44CrossRefGoogle Scholar
  45. Bolan N, Kunhikrishnan A, Gibbs J (2012) Rhizoreduction of arsenate and chromate in Australian native grass, shrub and tree vegetation. Plant Soil (DOI 10.1007/s11104-012-1506-y)Google Scholar
  46. Bolan NS, Mahimairaja S, Megharaj M, Naidu R, Adriano DC (2006) Biotransformation of ­arsenic in soil and aquatic environments: bioavailability and bioremediation. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (eds) Managing arsenic in the environment: from soil to human health. CSIRO, Melbourne, pp 433–453Google Scholar
  47. Bolan NS, Thiagarajan S (2001) Retention and plant availability of chromium in soils as affected by lime and organic matter amendments. Aust J Soil Res 39:1091–1104CrossRefGoogle Scholar
  48. Boszke L, Kowalski A, Glosinska G, Szarek R, Siepak J (2003) Environmental factors affecting speciation of mercury in the bottom sediments; an overview. Pol J Environ Stud 12:5–14Google Scholar
  49. Bowell R (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl Geochem 9:279–286CrossRefGoogle Scholar
  50. Branzini A, Zubillaga M (2010) Assessing phytotoxicity of heavy metals in remediated soil. Int J Phytoremediation 12:335–342CrossRefGoogle Scholar
  51. Bridou R, Monperrus M, Gonzalez PR, Guyoneaud R, Amouroux D (2011) Simultaneous determination of mercury methylation and demethylation capacities of various sulfate‐reducing bacteria using species‐specific isotopic tracers. Environ Toxicol Chem 30:337–344CrossRefGoogle Scholar
  52. Brock TD, Madigan MT (1991) Biology of microorganisms. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  53. Brown S, Chaney R, Angle JS, Ryan JA (1998) The phytoavailability of cadmium to lettuce in long-term biosolid amended soil. J Environ Qual 27:1071–1078CrossRefGoogle Scholar
  54. Calderone S, Frankenberger W, Parker D, Karlson U (1990) Influence of temperature and organic amendments on the mobilization of selenium in sediments. Soil Biol Biochem 22:615–620CrossRefGoogle Scholar
  55. Camargo FA, Okeke BC, Bento FM, Frankenberger WT (2003) In vitro reduction of hexavalent chromium by a cellfree extract of Bacillus sp. ES 29 stimulated by Cu2+. Appl Microbiol Biotechnol 62:569–573CrossRefGoogle Scholar
  56. Cao X, Ma LQ (2004) Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environ Pollut 132:435–442CrossRefGoogle Scholar
  57. Cao X, Ma LQ, Shiralipour A (2003) Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ Pollut 126:157–167CrossRefGoogle Scholar
  58. Carbonell-Barrachina AA, Jugsujinda A, Sirisukhodom S, Anurakpongsatorn P, Burló F, DeLaune RD, Patrick WH Jr (1999) The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil. Environ Int 25:613–618CrossRefGoogle Scholar
  59. Casiot C, Bruneel O, Personne JC, Leblanc M, Elbaz-Poulichet F (2004) Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnoules, France). Sci Total Environ 320:259–267CrossRefGoogle Scholar
  60. Chakraborty S, Bardelli F, Charlet L (2010) Reactivities of Fe(II) on calcite: selenium reduction. Environ Sci Technol 44:1288–1294CrossRefGoogle Scholar
  61. Chen CP, Juang KW, Lin TH, Lee DY (2010) Assessing the phytotoxicity of chromium in Cr (VI)-spiked soils by Cr speciation using XANES and resin extractable Cr(III) and Cr(VI). Plant Soil 334:299–309CrossRefGoogle Scholar
  62. Chen NC, Kanazawa S, Horiguchi T (2000) Chromium(VI) reduction in wheat rhizosphere. Pedosphere 10:31–36Google Scholar
  63. Chen SL, Wilson DB (1997) Genetic engineering of bacteria and their potential for Hg2+ bioremediation. Biodegradation 8:97–103CrossRefGoogle Scholar
  64. Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59:8–15CrossRefGoogle Scholar
  65. Chiu CC, Cheng CJ, Lin TH, Juang KW, Lee DY (2009) The effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils. J Hazard Mater 161:1239–1244CrossRefGoogle Scholar
  66. Chiu VQ, Hering JG (2000) Arsenic adsorption and oxidation at manganite surfaces. 1. Method for simultaneous determination of adsorbed and dissolved arsenic species. Environ Sci Technol 34:2029–2034 Choi SC, Bartha R (1994) Environmental factors affecting mercury methylation in estuarine ­sediments. Bull Environ Contam Toxicol 53:805–812CrossRefGoogle Scholar
  67. Choppala G (2011) Reduction and bioavailability of chromium in soils. Doctoral thesis, University of South Australia, AustraliaGoogle Scholar
  68. Choppala GK, Bolan NS, Megharaj M, Chen Z, Naidu R (2012) The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. J Environ Qual 41:1175–1184CrossRefGoogle Scholar
  69. Christen K (2001) Chickens, manure, and arsenic. Environ Sci Technol 35:184A–185ACrossRefGoogle Scholar
  70. Ciesielski T, Pastukhov MV, Szefer P (2010) Bioaccumulation of mercury in the pelagic food chain of the Lake Baikal. Chemosphere 78:1378–1384CrossRefGoogle Scholar
  71. Cifuentes F, Lindemann W, Barton L (1996) Chromium sorption and reduction in soil with implications to bioremediation. Soil Sci 161:233CrossRefGoogle Scholar
  72. Cossich ES, da Silva EA, Tavares CRG, Filho LC, Ravagnani TMK (2004) Biosorption of chromium (III) by biomass of seaweed Sargassum sp. in a fixed-bed column. Adsorption 10:129–138CrossRefGoogle Scholar
  73. Costa M, Liss P (1999) Photoreduction of mercury in sea water and its possible implications for Hg0 air-sea fluxes. Mar Chem 68:87–95CrossRefGoogle Scholar
  74. Crowley DE, Dungan RS (2002) Metals: microbial processes affecting metals, Encyclopedia of environmental microbiology. Wiley, New York, pp 1878–1893Google Scholar
  75. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–729CrossRefGoogle Scholar
  76. Danielsson S, Hedman J, Miller A, Bignert A (2011) Mercury in Perch from Norway, Sweden and Finland—geographical patterns and temporal trends. Report nr 8:2011, Department of contaminant research, Swedish museum of natural history, Stockholm, SwedenGoogle Scholar
  77. Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Ind J Biotechnol 7:159–169Google Scholar
  78. Das SK, Guha AK (2009) Biosorption of hexavalent chromium by Termitomyces clypeatus biomass: kinetics and transmission electron microscopic study. J Hazard Mater 167:685–691CrossRefGoogle Scholar
  79. de Lacerda L (2003) Updating global Hg emissions from small-scale gold mining and assessing its environmental impacts. Environ Geol 43:308–314Google Scholar
  80. de Lacerda LD, Salomons W (1998) Mercury from gold and silver mining: a chemical time bomb? Springer Verlag, BerlinCrossRefGoogle Scholar
  81. Debieux CM, Dridge EJ, Mueller CM, Splatt P, Paszkiewicz K, Knight I, Florance H, Love J, Titball RW, Lewis RJ (2011) A bacterial process for selenium nanosphere assembly. Proc Natl Acad Sci USA 108:13480–13485CrossRefGoogle Scholar
  82. Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci USA 103:5413–5418CrossRefGoogle Scholar
  83. Dhillon K, Dhillon S, Dogra R (2010) Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials. Chemosphere 78:548–556CrossRefGoogle Scholar
  84. Dostalek P, Patzak M, Matejka P (2004) Influence of specific growth limitation on biosorption of heavy metals by Saccharomyces cerevisiae. Int Biodeterior Biodegradation 54:203–207CrossRefGoogle Scholar
  85. Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88CrossRefGoogle Scholar
  86. Drahota P, Rohovec J, Filippi M, Mihaljevic M, Rychlovský P, Cervený V, Pertold Z (2009) Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Sci Total Environ 407:3372–3384CrossRefGoogle Scholar
  87. Drexel RT, Haitzer M, Ryan JN, Aiken GR, Nagy KL (2002) Mercury (II) sorption to two Florida Everglades peats: evidence for strong and weak binding and competition by dissolved organic matter released from the peat. Environ Sci Technol 36:4058–4064CrossRefGoogle Scholar
  88. Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B (2001) Adsorption and migration of heavy metals in soil. Pol J Environ Stud 10:1–10Google Scholar
  89. Duester L, Vink JM, Hirner AV (2008) Methylantimony and -arsenic species in sediment pore water tested with the sediment or fauna incubation experiment. Environ Sci Technol 42:5866–5871CrossRefGoogle Scholar
  90. Dungan RS, Frankenberger Jr. WT (2000) Factors affecting the volatilization of dimethylselenide by Enterobacter cloacae SLD1a-1 Soil Biol Biochem 32:1353–1358 Dursun AY (2006) A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper (II) and lead (II) ions onto pretreated Aspergillus niger. Biochem Eng J 28:187–195CrossRefGoogle Scholar
  91. Eary LE, Rai D (1991) Chromate reduction by subsurface soils under acidic conditions. Soil Sci Soc Am J 55:676CrossRefGoogle Scholar
  92. Edvantoro BB, Naidu R, Megharaj M, Merrington G, Singleton I (2004) Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Appl Soil Ecol 25:207–217CrossRefGoogle Scholar
  93. Ehrlich HL (1996) Geomicrobiology, 3rd edn. Dekker, New YorkGoogle Scholar
  94. Elbaz-Poulichet F, Dupuy C, Cruzado A, Velasquez Z, Achterberg EP, Braungardt CB (2000) Influence of sorption processes by iron oxides and algae fixation on arsenic and phosphate cycle in an acidic estuary (Tinto river, Spain). Water Res 34:3222–3230CrossRefGoogle Scholar
  95. Emett MT, Khoe GH (2001) Photochemical oxidation of arsenic by oxygen and iron in acidic solutions. Water Res 35:649–656CrossRefGoogle Scholar
  96. Fergusson JF, Gavis J (1972) A review of the arsenic cycle in natural waters. Water Res 6:1259–1274CrossRefGoogle Scholar
  97. Fernández-Martínez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110CrossRefGoogle Scholar
  98. Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278CrossRefGoogle Scholar
  99. Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72:457–464CrossRefGoogle Scholar
  100. Franco DV, Da Silva LM, Jardim WF (2009) Chemical reduction of hexavalent chromium present in contaminated soil using a packed‐bed column reactor. CLEAN 37:858–865Google Scholar
  101. Frankenberger WT Jr, Arshad M (2001) Bioremediation of selenium‐contaminated sediments and water. Biofactors 14:241–254CrossRefGoogle Scholar
  102. Frankenberger W, Arshad M (2002) Volatilization of arsenic. In: Frankenberger W (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 363–380Google Scholar
  103. Frankenberger WT Jr, Karlson U (1994a) Soil management factors affecting volatilization of selenium from dewatered sediments. Geomicrobiol J 12:265–278CrossRefGoogle Scholar
  104. Frankenberger WT Jr, Karlson U (1994b) Microbial volatilization of selenium from soils and sediments. In: Frankenberger WT Jr, Benson S (eds) Selenium in the environment. Marcel Dekker, New York, pp 369–387Google Scholar
  105. Frankenberger WT, Arshad M, Siddique T, Han SK, Okeke BC, Zhang Y (2005) Bacterial diversity in selenium reduction of agricultural drainage water amended with rice straw. J Environ Qual 34:217–226Google Scholar
  106. Frankenberger WT, Losi ME (1995) Application of bioremediation in the cleanup of heavy elements and metalloids. In: Skipper HD, Turco RF (eds) Bioremediation: science and applications, Soil science special publication No. 43. Soil Science Society of America Inc, Madison, WI, pp 173–210Google Scholar
  107. Fulladosa E, Murat JC, Martinez M, Villaescusal I (2004) Effect of pH on arsenate and arsenite toxicity to luminescent bacteria (Vibrio fischeri). Arch Environ Contam Toxicol 46:176–182Google Scholar
  108. Gadd G (1993) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316CrossRefGoogle Scholar
  109. Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Cell Mol Life Sci 46:834–840CrossRefGoogle Scholar
  110. Gadd GM (2008) Fungi and their role in the biosphere. In: Jorgensen SE, Fath B (eds) Encyclopedia of ecology. Elsevier, Amsterdam, pp 1709–1717CrossRefGoogle Scholar
  111. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643CrossRefGoogle Scholar
  112. Gao S, Tanji KK (1995) Model for biomethylation and volatilization of selenium from agricultural evaporation ponds. J Environ Qual 24:191–197CrossRefGoogle Scholar
  113. Geng B, Jin Z, Li T, Qi X (2009) Kinetics of hexavalent chromium removal from water by chitosan-­Fe0 nanoparticles. Chemosphere 75:825–830CrossRefGoogle Scholar
  114. Geoffrey M, Gadd G (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49CrossRefGoogle Scholar
  115. Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV, Schadt CW, Wall JD (2011) Sulfate-­reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 77:3938–3951CrossRefGoogle Scholar
  116. Gilmour CC, Henry EA (1991) Mercury methylation in aquatic systems affected by acid deposition. Environ Poll 71:131–169 Goh KH, Lim TT (2005) Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment. Appl Geochem 20:229–239CrossRefGoogle Scholar
  117. Gong C, Donahoe RJ (1997) An experimental study of heavy metal attenuation and mobility in sandy loam soils. Appl Geochem 12:243–254CrossRefGoogle Scholar
  118. Graham AM, Aiken GR, Gilmour CC (2012) Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environ Sci Technol 46:2715–2723CrossRefGoogle Scholar
  119. Green-Ruiz C (2006) Mercury (II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresour Technol 97:1907–1911CrossRefGoogle Scholar
  120. Guo L, Frankenberger WT Jr, Jury WA (1999) Evaluation of simultaneous reduction and transport of selenium in saturated soil columns. Water Resour Res 35:663–669CrossRefGoogle Scholar
  121. Hammerschmidt CR, Fitzgerald WF (2006) Photodecomposition of methylmercury in an arctic Alaskan lake. Environ Sci Technol 40:1212–1216CrossRefGoogle Scholar
  122. Hansel CM, Fendorf S, Jardine PM, Francis CA (2008) Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol 74:1620–1633CrossRefGoogle Scholar
  123. Hansen HK, Ribeiro A, Mateus E (2006) Biosorption of arsenic (V) with Lessonia nigrescens. Min Eng 19:486–490CrossRefGoogle Scholar
  124. Hartley W, Dickinson NM, Riby P, Lepp NW (2009) Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut 157:2654–2662CrossRefGoogle Scholar
  125. Hasan S, Ranjan D, Talat M (2010) Agro-industrial waste ‘wheat bran’ for the biosorptive remediation of selenium through continuous up-flow fixed-bed column. J Hazard Mater 181:1134–1142CrossRefGoogle Scholar
  126. Haswell SJ, O’Neill P, Bancroft KC (1985) Arsenic speciation in soil-pore waters from mineralized and unmineralized areas of south-west England. Talanta 32:69–72CrossRefGoogle Scholar
  127. Haygarth PM, Fowler D, Sturup S, Davison BM, Tones KC (1994) Determination of gaseous and particulate selenium over a rural grassland in the UK. Atmos Environ 28:3655–3663CrossRefGoogle Scholar
  128. He Z, Gao F, Sha T, Hu Y, He C (2009) Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. J Hazard Mater 163:869–873CrossRefGoogle Scholar
  129. Hechun P, Guangshen L, Zhiyun Y, Yetang H (1996) Acceleration of selenate reduction by alternative drying and wetting of soils. Chin J Geochem 15:278–284CrossRefGoogle Scholar
  130. Heeraman D, Claassen V, Zasoski R (2001) Interaction of lime, organic matter and fertilizer on growth and uptake of arsenic and mercury by Zorro fescue (Vulpia myuros L.). Plant Soil 234:215–231CrossRefGoogle Scholar
  131. Herbel MJ, Blum JS, Oremland RS, Borglin SE (2003) Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol J 20:587–602CrossRefGoogle Scholar
  132. Heyes A, Mason RP, Kim EH, Sunderland E (2006) Mercury methylation in estuaries: insights from using measuring rates using stable mercury isotopes. Mar Chem 102:134–147CrossRefGoogle Scholar
  133. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657CrossRefGoogle Scholar
  134. Higgins TE, Halloran A, Dobbins M, Pittignano A (1998) In situ reduction of hexavalent chromium in alkaline soils enriched with chromite ore processing residue. J Air Waste Manage Assoc 48:1100–1106CrossRefGoogle Scholar
  135. Hinsinger P, Bengough G, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biochemistry and ecological relevance. Plant Soil 321:117–152CrossRefGoogle Scholar
  136. Horton RN, Apel WA, Thompson VS, Sheridan PP (2006) Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens. BMC Microbiol 6:5. doi: 10.1186/1471-2180-6-5 CrossRefGoogle Scholar
  137. Hsu L, Wang S, Lin Y, Wang M, Chiang P, Liu J, Kuan W, Chen C, Tzou Y (2010) Cr(VI) removal on fungal biomass of Neurospora crassa: the importance of dissolved organic carbons derived from the biomass to Cr (VI) reduction. Environ Sci Technol 44:6202–6208CrossRefGoogle Scholar
  138. Hsu NH, Wang SL, Lin YC, Sheng GD, Lee JF (2009) Reduction of Cr(VI) by crop-residue-derived black carbon. Environ Sci Technol 43:8801–8806CrossRefGoogle Scholar
  139. Huang JH, Voegelin A, Pombo SA, Lazzaro A, Zeyer J, Kretzschmar R (2011) Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32. Environ Sci Technol 44:6202–6208Google Scholar
  140. Ibrahim ASS, El-Tayeb MA, Elbadawi YB, Al-Salamah AA (2011) Isolation and characterization of novel potent Cr(VI) reducing alkaliphilic Amphibacillus sp. KSUCr3 from hypersaline soda lakes. Electron J Biotechnol 4:1–14Google Scholar
  141. Ikram M, Faisal M (2010) Comparative assessment of selenite (SeIV) detoxification to elemental selenium (Se0) by Bacillus sp. Biotechnol Lett 32:1255–1259CrossRefGoogle Scholar
  142. Iyer A, Mody K, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull 50:340–343CrossRefGoogle Scholar
  143. Jackson TA (1989) The influence of clay minerals, oxides, and humic matter on the methylation and demethylation of mercury by micro‐organisms in freshwater sediments. Appl Organomet Chem 3:1–30CrossRefGoogle Scholar
  144. James BR (2001) Remediation-by-reduction strategies for chromate-contaminated soils. Environ Geochem Health 23:175–179CrossRefGoogle Scholar
  145. James BR, Bartlett RJ (1983) Behavior of chromium in soils: VII. Adsorption and reduction of hexavalent forms. J Environ Qual 12:177–181 Jardine P, Fendorf S, Mayes M, Larsen I, Brooks S, Bailey W (1999) Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ Sci Technol 33:2939–2944CrossRefGoogle Scholar
  146. Jones C, Anderson H, McDermott K, Inskeep T (2000) Rates of microbially mediated arsenate reduction and solubilization. Soil Sci Soc Am J 64:600CrossRefGoogle Scholar
  147. Karlson U, Frankenberger WT Jr, Spencer WF (1994) Physico-chemical properties of dimethyl selenide. J Chem Eng Data 39:608–610CrossRefGoogle Scholar
  148. Kelly C, Rudd JWM, Holoka M (2003) Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. Environ Sci Technol 37:2941–2946CrossRefGoogle Scholar
  149. Kim JGD, Chusuei JB, Deng CC (2002) Oxidation of chromium(III) to (VI) by manganese oxides. Soil Sci Soc Am J 66:306–315CrossRefGoogle Scholar
  150. Kim MJ (2010) Effects of pH, adsorbate/adsorbent ratio, temperature and ionic strength on the adsorption of arsenate onto soil. Geochem Explor Env A 10:407–412CrossRefGoogle Scholar
  151. Knauer K, Behra R, Hemond H (1999) Toxicity of inorganic and methylated arsenic to algal communities from lakes along an arsenic contamination gradient. Aquat Toxicol 46:221–230CrossRefGoogle Scholar
  152. Kocman D, Horvat M (2010) A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment. Atmos Chem Phys Discuss 10:1417–1426Google Scholar
  153. Kodukula PS, Patterson JW, Surampalli RY (1994) Sorption and precipitation of metals in activated-­sludge. Biotechnol Bioeng 43:874–880CrossRefGoogle Scholar
  154. Kosolapov D, Kuschk P, Vainshtein M, Vatsourina A, Wiessner A, Kästner M, Müller R (2004) Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng Life Sci 4:403–411CrossRefGoogle Scholar
  155. Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272CrossRefGoogle Scholar
  156. Kumagai Y, Sumi D (2007) Arsenic: signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity. Annu Rev Pharmacol Toxicol 47:243–262CrossRefGoogle Scholar
  157. Lambertsson L, Nilsson M (2006) Organic material: the primary control on mercury methylation and ambient methyl mercury concentrations in estuarine sediments. Environ Sci Technol 40:1822–1829CrossRefGoogle Scholar
  158. Landrot G, Ginder-Vogel M, Sparks DL (2009) Kinetics of chromium (III) oxidation by manganese (IV) oxides using quick scanning X-ray absorption fine structure spectroscopy (Q-XAFS). Environ Sci Technol 44:143–149CrossRefGoogle Scholar
  159. Lawson S, Macy JM (1995) Bioremediation of selenite in oil refinery waste-water. Appl Microbiol Biotechnol 43:762–765CrossRefGoogle Scholar
  160. Ledin M, Krantz-Rulcker C, Allard B (1999) Microorganisms as metal sorbents: comparison with other soil constituents in multi-compartment systems. Soil Biol Biochem 31:1639–1648CrossRefGoogle Scholar
  161. Lee DY, Shih YN, Zheng HC, Chen CP, Juang KW, Lee JF, Tsui L (2006) Using the selective ion exchange resin extraction and XANES methods to evaluate the effect of compost amendments on soil chromium(VI) phytotoxicity. Plant Soil 281:87–96CrossRefGoogle Scholar
  162. Lehr CR (2003) Microbial methylation and volatilization of arsenic. PhD thesis, Department of chemistry, The University of British Columbia, CanadaGoogle Scholar
  163. Leita L, Margon A, Sinicco T, Mondini C (2011) Glucose promotes the reduction of hexavalent chromium in soil. Geoderma 164:122–127CrossRefGoogle Scholar
  164. Lens P, Van Hullebusch E, Astratinei V (2006) Bioconversion of selenate in methanogenic anaerobic granular sludge. J Environ Qual 35:1873–1883CrossRefGoogle Scholar
  165. Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102CrossRefGoogle Scholar
  166. Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080CrossRefGoogle Scholar
  167. Liebert CA, Wireman J, Smith T, Summers AO (1997) Phylogeny of mercury resistance (mer) operons of gram-negative bacteria isolated from the fecal flora of primates. Appl Environ Microbiol 63:1066–1076Google Scholar
  168. Lortie L, Gould W, Rajan S, McCready R, Cheng KJ (1992) Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol 58:4042–4044Google Scholar
  169. Loseto LL, Siciliano SD, Lean DRS (2004) Methylmercury production in high Arctic wetlands. Environ Toxicol Chem 23:17–23CrossRefGoogle Scholar
  170. Losi M, Amrhein C, Frankenberger W Jr (1994) Factors affecting chemical and biological reduction of hexavalent chromium in soil. Environ Toxicol Chem 13:1727–1735CrossRefGoogle Scholar
  171. Losi ME, Frankenberger WT Jr (1997a) Reduction of selenium oxyanions by Enterobacter cloacae strain SLD1a‐1: reduction of selenate to selenite. Environ Toxicol Chem 16:1851–1858Google Scholar
  172. Losi ME, Frankenberger WT (1997b) Bioremediation of selenium in soil and water. Soil Sci 162:692–702CrossRefGoogle Scholar
  173. Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Res 37:4544–4552CrossRefGoogle Scholar
  174. Lovley DR (1995) Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol 14:85–93CrossRefGoogle Scholar
  175. Mabrouk MEM (2008) Statistical optimization of medium components for chromate reduction by halophilic Streptomyces sp. MS-2. Afr J Microbiol Res 2:103–109Google Scholar
  176. Maher W, Butler E (1988) Arsenic in the marine environment. Appl Organomet Chem 2:191–214CrossRefGoogle Scholar
  177. Mahimairaja S, Bolan NS, Adriano D, Robinson B (2005) Arsenic contamination and its risk management in complex environmental settings. Adv Agron 86:1–82CrossRefGoogle Scholar
  178. Maiers D, Wichlacz P, Thompson D, Bruhn D (1988) Selenate reduction by bacteria from a selenium-­rich environment. Appl Environ Microbiol 54:2591–2593Google Scholar
  179. Manning BA, Fendorf SE, Bostick B, Suarez DL (2002) Arsenic(III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite. Environ Sci Technol 36:976–981CrossRefGoogle Scholar
  180. Marechal JC, Ahmed S, Engerrand C, Galeazzi L, Touchard F (2006) Threatened groundwater resources in rural India: an example of monitoring. Asian J Water Environ Pollut 3:15–21Google Scholar
  181. Marinari S, Masciandaro G, Ceccanti B, Grego S (2000) Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresour Technol 72:9–17CrossRefGoogle Scholar
  182. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  183. Marvin-Dipasquale M, Agee J, McGowan C, Oremland RS, Thomas M, Krabbenhoft D, Gilmour CC (2000) Methyl-mercury degradation pathways: a comparison among three mercury-­impacted ecosystems. Environ Sci Technol 34:4908–4916CrossRefGoogle Scholar
  184. Mason RP, Rolfhus KR, Fitzgerald WF (1995) Methylated and elemental mercury cycling in the surface and deep waters of the North Atlantic. Water Air Soil Pollut 80:665–677CrossRefGoogle Scholar
  185. Masscheleyn PH, Delaune RD, Patrick WH Jr (1990) Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environ Sci Technol 24:91–96CrossRefGoogle Scholar
  186. Mehrotra AS, Sedlak DL (2005) Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries. Environ Sci Technol 39:2564–2570CrossRefGoogle Scholar
  187. Mejáre M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73CrossRefGoogle Scholar
  188. Melo J, D’Souza S (2004) Removal of chromium by mucilaginous seeds of Ocimum basilicum. Bioresour Technol 92:151–155CrossRefGoogle Scholar
  189. Michalke K, Wickenheiser E, Mehring M, Hirner A, Hensel R (2000) Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66:2791–2796CrossRefGoogle Scholar
  190. Miskimmin BM, Rudd JWM, Kelly CA (1992) Influences of DOC, pH, and microbial respiration rates of mercury methylation and demethylation in lake water. Can J Fish Aquat Sci 49:17–22CrossRefGoogle Scholar
  191. Miyata N, Tani Y, Sakata M, Iwahori K (2007) Microbial manganese oxide formation and interaction with toxic metal ions. J Biosci Bioeng 104:1–8CrossRefGoogle Scholar
  192. Mohanty K, Jha M, Meikap B, Biswas M (2006) Biosorption of Cr (VI) from aqueous solutions by Eichhornia crassipes. Chem Eng J 117:71–77CrossRefGoogle Scholar
  193. Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Ghomshei M, Meech JA (2005a) Induced plant uptake and transport of mercury in the presence of sulphur‐containing ligands and humic acid. New Phytol 166:445–454CrossRefGoogle Scholar
  194. Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Nomura R, Ghomshei M, Meech JA (2005b) Effect of thioligands on plant-Hg accumulation and volatilisation from mercury-­contaminated mine tailings. Plant Soil 275:233–246CrossRefGoogle Scholar
  195. Mosher BW, Duce RA (1987) Global atmospheric selenium budget. J Geophys Res 92:13289–13298CrossRefGoogle Scholar
  196. Munthe J, Xiao Z, Lindqvist O (1991) The aqueous reduction of divalent mercury by sulfite. Water Air Soil Pollut 56:621–630CrossRefGoogle Scholar
  197. Murphy V, Hughes H, McLoughlin P (2008) Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70:1128–1134CrossRefGoogle Scholar
  198. Murugesan G, Sathishkumar M, Swaminathan K (2006) Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresour Technol 97:483–487CrossRefGoogle Scholar
  199. Musante A (2008) The role of mercury speciation in its methylation by methylcobalamin (­vitamin-­B12). Bachelor thesis, Wheaton College, Norton, MAGoogle Scholar
  200. Myneni S, Tokunaga TK, Brown GE Jr (1997) Abiotic selenium redox transformations in the presence of Fe(II, III) oxides. Science 278:1106–1109CrossRefGoogle Scholar
  201. Nakayasu K, Fukushima M, Sasaki K, Tanaka S, Nakamura H (1999) Comparative studies of the reduction behavior of chromium(VI) by humic substances and their precursors. Environ Toxicol Chem 18:1085–1090Google Scholar
  202. Navratilova J, Raber G, Fisher SJ, Francesconi KA (2011) Arsenic cycling in marine systems: degradation of arsenosugars to arsenate in decomposing algae, and preliminary evidence for the formation of recalcitrant arsenic. Environ Chem 8:44–51CrossRefGoogle Scholar
  203. Ndung’u K, Friedrich S, Gonzalez AR, Flegal AR (2010) Chromium oxidation by manganese (hydr) oxides in a California aquifer. Appl Geochem 25:377–381CrossRefGoogle Scholar
  204. Newman DK, Beveridge TJ, Morel FMM (1997) Precipitation of As2S3 by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63:2022–2028 Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750CrossRefGoogle Scholar
  205. Niu CH, Volesky B, Cleiman D (2007) Biosorption of arsenic(V) with acid-washed crab shells. Water Res 41:2473–2478CrossRefGoogle Scholar
  206. Oiffer L, Siciliano SD (2009) Methyl mercury production and loss in Arctic soil. Sci Total Environ 407:1691–1700CrossRefGoogle Scholar
  207. Oliver DS, Brockman FJ, Bowman RS, Kieft TL (2003) Microbial reduction of hexavalent ­chromium under vadose zone conditions. J Environ Qual 32:317–324 Opperman DJ, Piater LA, Van Heerden E (2008) A novel chromate reductase from Thermus ­scotoductus SA-01 related to old yellow enzyme. J Bacteriol 190:3076–3082CrossRefGoogle Scholar
  208. Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60CrossRefGoogle Scholar
  209. Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microbiol 55:2333–2343Google Scholar
  210. Öztürk A, Artan T, Ayar A (2004) Biosorption of nickel(II) and copper(II) ions from aqueous ­solution by Streptomyces coelicolor A3(2). Colloids Surf B Biointerfaces 34:105–111CrossRefGoogle Scholar
  211. Pacyna E, Pacyna J, Pirrone N (2001) European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmos Environ 35:2987–2996CrossRefGoogle Scholar
  212. Pal S, Vimala Y (2011) Bioremediation of chromium from fortified solutions by Phanerochaete chrysosporium (MTCC 787). J Bioremed Biodegradation 2:127Google Scholar
  213. Park D, Yun YS, Park JM (2004) Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Environ Sci Technol 38:4860–4864CrossRefGoogle Scholar
  214. Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW (2011a) Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. J Hazard Mater 185:549–574CrossRefGoogle Scholar
  215. Park JH, Bolan NS, Megharaj M, Naidu R (2011b) Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater 185:829–836CrossRefGoogle Scholar
  216. Park JH, Bolan NS, Megharaj M, Naidu R, Chung JW (2011c) Bacterial-assisted immobilization of lead in soils: implications for remediation. Pedologist 54:162–174Google Scholar
  217. Parvathi K, Nagendran R (2008) Functional groups on waste beer yeast involved in chromium biosorption from electroplating effluent. World J Microbiol Biotechnol 24:2865–2870CrossRefGoogle Scholar
  218. Paul J, Beauchamp E (1989) Effect of carbon constituents in manure on denitrification in soil. Can J Soil Sci 69:49–61CrossRefGoogle Scholar
  219. Pécheyran C, Quetel CR, Lecuyer FMM, Donard OFX (1998) Simultaneous determination of volatile metal (Pb, Hg, Sn, In, Ga) and nonmetal species (Se, P, As) in different atmospheres by cryofocusing and detection by ICPMS. Anal Chem 70:2639–2645CrossRefGoogle Scholar
  220. Pédrot M, Dia A, Davranche M, Bouhnik-Le Coz M, Henin O, Gruau G (2008) Insights into colloid-­mediated trace element release at the soil/water interface. J Colloid Interface Sci 325:187–197CrossRefGoogle Scholar
  221. Peitzsch M, Kremer D, Kersten M (2010) Microfungal alkylation and volatilization of selenium adsorbed by goethite. Environ Sci Technol 44:129–135CrossRefGoogle Scholar
  222. Perpetuo EA, Souza CB, Nascimento CAO (2011) Engineering bacteria for bioremediation. In: Carpi A (ed) Progress in molecular and environmental bioengineering—from analysis and modeling to technology applications. InTech Publishers, Rijeka, pp 605–632Google Scholar
  223. Prasad KS, Srivastava P, Subramanian V, Paul J (2011) Biosorption of As (III) ion on Rhodococcus sp. WB-12: biomass characterization and kinetic studies. Separ Sci Technol 46:2517–2525CrossRefGoogle Scholar
  224. Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci USA 106:5213–5217CrossRefGoogle Scholar
  225. Qureshi S, Richards BK, McBride MB, Baveye P, Steenhuis TS (2003) Temperature and microbial activity effects on trace element leaching from metalliferous peats. J Environ Qual 32:2067–2075CrossRefGoogle Scholar
  226. Ramial P, John WMR, Furutam A, Xun L (1985) The effect of pH on methyl mercury production and decomposition in lake sediments. Can J Fish Aquat Sci 42:685–692CrossRefGoogle Scholar
  227. Ranjard L, Prigent-Combaret C, Nazaret S, Cournoyer B (2002) Methylation of inorganic and organic selenium by the bacterial thiopurine methyltransferase. J Bacteriol 184:3146–3149CrossRefGoogle Scholar
  228. Ravichandran M (2004) Interactions between mercury and dissolved organic matter—a review. Chemosphere 55:319–331CrossRefGoogle Scholar
  229. Reategui M, Maldonado H, Ly M, Guibal E (2010) Mercury(II) biosorption using Lessonia sp Kelp. Appl Biochem Biotechnol 162:805–822CrossRefGoogle Scholar
  230. Rech S, Macy J (1992) The terminal reductases for selenate and nitrate respiration in Thauera selenatis are two distinct enzymes. J Bacteriol 174:7316–7320Google Scholar
  231. Regnell O, Tunlid A (1991) Laboratory study of chemical speciation of mercury in lake sediment and water under aerobic and anaerobic conditions. Appl Environ Microbiol 57:789–795Google Scholar
  232. Rendina A, Barros M, de lorio A (2006) Phytoavailability and solid-phase distribution of chromium in a soil amended with organic matter. Bull Environ Contam Toxicol 76:1031–1037CrossRefGoogle Scholar
  233. Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142CrossRefGoogle Scholar
  234. Robinson B, Bolan NS, Mahimairaja S, Clothier B (2006) Solubility, mobility and bioaccumulation of trace elements: abiotic processes in the rhizosphere. In: Prasad M, Sajwan K, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. CRC Press, London, pp 97–110Google Scholar
  235. Rocha JC, Junior ÉS, Zara LF, Rosa AH, dos Santos A, Burba P (2000) Reduction of mercury (II) by tropical river humic substances (Rio Negro)—A possible process of the mercury cycle in Brazil. Talanta 53:551–559CrossRefGoogle Scholar
  236. Rochette EA, Bostick BC, Li GC, Fendorf S (2000) Kinetics of arsenate reduction by dissolved sulfide. Environ Sci Technol 34:4714–4720 Rock ML, James BR, Helz GR (2001) Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils. Environ Sci Technol 35:4054–4059CrossRefGoogle Scholar
  237. Rodríguez Martín-Doimeadios R, Tessier E, Amouroux D, Guyoneaud R, Duran R, Caumette P, Donard O (2004) Mercury methylation/demethylation and volatilization pathways in estuarine sediment slurries using species-specific enriched stable isotopes. Mar Chem 90:107–123CrossRefGoogle Scholar
  238. Roeselers G, van Loosdrecht MCM, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20:227–235CrossRefGoogle Scholar
  239. Rogers R (1976) Methylation of mercury in agricultural soils. J Environ Qual 5:454–458CrossRefGoogle Scholar
  240. Rogers RD, MacFarlane JC (1978) Factors influencing the volatilization of mercury from soil. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring and Support Laborator, Las VegasGoogle Scholar
  241. Rosen BP, Silver S (1987) Ion transport in prokaryotes. Academic, San Diego, CAGoogle Scholar
  242. Ross SM (1994) Retention, transformation and mobility of toxic metals in soils. In: Ross SM (ed) Toxic metals in soil–plant systems. Wiley, New York, pp 63–152Google Scholar
  243. Roy V, Amyot M, Carignan R (2009) Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients. Environ Sci Technol 43:5605–5611CrossRefGoogle Scholar
  244. Rubinos DA, Iglesias L, Díaz-Fierros F, Barral MT (2011) Interacting effect of ph, phosphate and time on the release of arsenic from polluted river sediments (Anllóns River, Spain). Aquat Geochem 17:281–306CrossRefGoogle Scholar
  245. Sadiq M (1997) Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93:117–136Google Scholar
  246. Sağlam N, Say R, Denizli A, Patır S, Arıca MY (1999) Biosorption of inorganic mercury and alkylmercury species on to Phanerochaete chrysosporium mycelium. Process Biochem 34:725–730CrossRefGoogle Scholar
  247. Salomons W, Stigliani W (1995) Biogeodynamics of pollutants. Springer, Berlin, p 257CrossRefGoogle Scholar
  248. Sand W, Gehrke T, Jozsa PG, Schippers A (2001) (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallurgy 59:159–175CrossRefGoogle Scholar
  249. Sass H, Ramamoorthy S, Yarwood C, Langner H, Schumann P, Kroppenstedt R, Spring S, Rosenzweig R (2009) Desulfovibrio idahonensis sp. nov., sulfate-reducing bacteria isolated from a metal (loid)-contaminated freshwater sediment. Int J Syst Evol Microbiol 59:2208–2214CrossRefGoogle Scholar
  250. Schiewer S, Volesky B (2000) Biosorption processes for heavy metal removal. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, DC, pp 329–362Google Scholar
  251. Schlüter K (2000) Review: evaporation of mercury from soils. An integration and synthesis of current knowledge. Environ Geol 39:249–271CrossRefGoogle Scholar
  252. Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 32:809–822CrossRefGoogle Scholar
  253. Schwesig D, Matzner E (2001) Dynamics of mercury and methylmercury in forest floor and runoff of a forested watershed in Central Europe. Biogeochemistry 53:181–200CrossRefGoogle Scholar
  254. Sharma S, Bansal A, Dogra R, Dhillon SK, Dhillon KS (2011) Effect of organic amendments on uptake of selenium and biochemical grain composition of wheat and rape grown on seleniferous soils in northwestern India. J Plant Nutr Soil Sci 174:269–275CrossRefGoogle Scholar
  255. Shrestha B, Lipe S, Johnson KA, Zhang TQ, Retzlaff W, Lin ZQ (2006) Soil hydraulic manipulation and organic amendment for the enhancement of selenium volatilization in a soil-­pickleweed system. Plant Soil 288:189–196CrossRefGoogle Scholar
  256. Singh G, Brar M, Malhi S (2007) Decontamination of chromium by farm yard manure application in spinach grown in two texturally different Cr-contaminated soils. J Plant Nutr 30:289–308CrossRefGoogle Scholar
  257. Skopp J, Jawson MD, Doran JW (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am 54:1619–1625CrossRefGoogle Scholar
  258. Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 66:149–195CrossRefGoogle Scholar
  259. Smith WA, Apel WA, Petersen JN, Peyton BM (2002) Effect of carbon and energy source on bacterial chromate reduction. Biorem J 6:205–215CrossRefGoogle Scholar
  260. Smolders E, Buekers J, Oliver I, McLaughlin MJ (2004) Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field contaminated soils. Environ Toxicol Chem 23:2633–2640CrossRefGoogle Scholar
  261. Song X, Heyst BV (2005) Volatilization of mercury from soils in response to simulated precipitation. Atmos Environ 39:7494–7505CrossRefGoogle Scholar
  262. Srinath T, Verma T, Ramteke P, Garg S (2002) Chromium(VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435CrossRefGoogle Scholar
  263. Sukumar M (2010) Reduction of hexavalent chromium by Rhizopus Oryzae. Afr J Environ Sci Technol 4:412–418Google Scholar
  264. Sun X, Wang Q, Ma H, Wang Z, Yang S, Zhao C, Xu L (2011) Effects of plant rhizosphere on mercury methylation in sediments. J Soils Sediments 11:1062–1069CrossRefGoogle Scholar
  265. Surowitz KG, Titus JA, Pfister RM (1984) Effects of cadmium accumulation on growth and respiration of a cadmium-sensitive strain of Bacillus subtilis and a selected cadmium resistant mutant. Arch Microbiol 140:107–112CrossRefGoogle Scholar
  266. Suseela K, Sivaparvathi M, Nandy SC (1987) Removal of chromium from tannery effluent using powdered leaves. Leather Sci (Madras) 34:149–156CrossRefGoogle Scholar
  267. Svecova L, Spanelova M, Kubal M, Guibal E (2006) Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry. I. Equilibrium studies. Sep Purif Technol 52:142–153CrossRefGoogle Scholar
  268. Tan T, Beydoun D, Amal R (2003) Effects of organic hole scavengers on the photocatalytic reduction of selenium anions. J Photochem Photobiol A 159:273–280CrossRefGoogle Scholar
  269. Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165CrossRefGoogle Scholar
  270. Tarze A, Dauplais M, Grigoras I, Lazard M, Ha-Duong NT, Barbier F, Blanquet S, Plateau P (2007) Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae. J Biol Chem 282:8759–8767CrossRefGoogle Scholar
  271. Templeton AS, Trainor TP, Spormann AM, Brown GE Jr (2003) Selenium speciation and partitioning within Burkholderia cepacia biofilms formed on α-Al2O3 surfaces. Geochim Cosmochim Acta 67:3547–3557CrossRefGoogle Scholar
  272. Thayer JS, Brinckman FE (1982) The biological methylation of metals and metal-loids. Adv Organomet Chem 20:313–356Google Scholar
  273. Thompson-Eagle E, Frankenberger WT Jr, Karlson U (1989) Volatilization of selenium by Alternaria alternata. Appl Environ Microbiol 55:1406–1413Google Scholar
  274. Thompson-Eagle ET, Frankenberger WT Jr (1990) Site volatilization of selenium with alternative sources of protein for microbial deselenification at evaporation ponds. J Environ Qual 19:125–129CrossRefGoogle Scholar
  275. Thompson-Eagle ET, Franakenberger WT Jr (1992) Bioremediation of soils contaminated with selenium. In: Lal R, Stewart BA (eds) Advances in soil science. Springer, New York, pp 261–310Google Scholar
  276. Tseng JK, Bielefeldt AR (2002) Low-temperature chromium (VI) biotransformation in soil with varying electron acceptors. J Environ Qual 31:1831–1841CrossRefGoogle Scholar
  277. Tüzen M, Özdemir M, Demirbaş A (1998) Heavy metal bioaccumulation by cultivated Agaricus bisporus from artificially enriched substrates. Z Lebensm Unters Forsch 206:417–419CrossRefGoogle Scholar
  278. Tuzen M, Sari A (2010) Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem Eng J 158:200–206CrossRefGoogle Scholar
  279. Ucun H, Bayhan YK, Kaya Y, Cakici A, Faruk Algur O (2002) Biosorption of chromium (VI) from aqueous solution by cone biomass of Pinus sylvestris. Bioresour Technol 85:155–158CrossRefGoogle Scholar
  280. Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31:241–293CrossRefGoogle Scholar
  281. Vainshtein M, Kuschk P, Mattusch J, Vatsourina A, Wiessner A (2003) Model experiments on the microbial removal of chromium from contaminated groundwater. Water Res 37:1401–1405CrossRefGoogle Scholar
  282. Vera SM, Werth CJ, Sanford RA (2001) Evaluation of different polymeric organic materials for creating conditions that favor reductive processes in groundwater. Biorem J 5:169–181CrossRefGoogle Scholar
  283. Viamajala S, Peyton BM, Apel WA, Petersen JN (2002) Chromate/nitrite interactions in Shewanella oneidensis MR‐1: evidence for multiple hexavalent chromium [Cr (VI)] reduction mechanisms dependent on physiological growth conditions. Biotechnol Bioeng 78:770–778CrossRefGoogle Scholar
  284. Vieira M, Oisiovici R, Gimenes M, Silva M (2008) Biosorption of chromium(VI) using a Sargassum sp. packed-bed column. Bioresour Technol 99:3094–3099CrossRefGoogle Scholar
  285. Volesky B, Holan Z (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250CrossRefGoogle Scholar
  286. Von Canstein H, Kelly S, Li Y, Wagner-Döbler I (2002) Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl Environ Microbiol 68:2829–2837CrossRefGoogle Scholar
  287. Wang D, Qing C, Guo T, Guo Y (1997) Effects of humic acid on transport and transformation of mercury in soil-plant systems. Water Air Soil Pollut 95:35–43Google Scholar
  288. Wang J, Feng X, Anderson CWN, Xing Y, Shang L (2012) Remediation of mercury contaminated sites—a review. J Hazard Mater 221–222:1–18Google Scholar
  289. Wang S, Mulligan CN (2006) Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. J Hazard Mater 138:459–470CrossRefGoogle Scholar
  290. Wang YP, Shi JY, Wang H, Lin Q, Chen XC, Chen YX (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotox Environ Safety 67:75–81CrossRefGoogle Scholar
  291. Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358CrossRefGoogle Scholar
  292. Warwick P, Inam E, Evans N (2005) Arsenic’s interaction with humic acid. Environ Chem 2:119–124CrossRefGoogle Scholar
  293. Watras CJ, Bloom NS (1992) Mercury and methyl mercury in individual zooplankton: implications for bioaccumulation. Limnol Oceanogr 37:1313–1318CrossRefGoogle Scholar
  294. Weber FA, Hofacker A, Voegelin A, Kretzschmar A (2010) Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Environ Sci Technol 44:116–122CrossRefGoogle Scholar
  295. Whalin L, Kim EH, Mason R (2007) Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Mar Chem 107:278–294CrossRefGoogle Scholar
  296. White C, Wilkinson SC, Gadd GM (1995) The role of microorganisms in biosorption of toxic metals and radionuclides. Int Biodeterior Biodegradation 35:17–40CrossRefGoogle Scholar
  297. Wiatrowski HA, Ward PM, Barkay T (2006) Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ Sci Technol 40:6690–6696CrossRefGoogle Scholar
  298. Wiener JG, Gilmour CC, Krabbenhoft DP (2003) Mercury strategy for the bay-delta ecosystem: a unifying framework for science, adaptive management, and ecological restoration. Report to the California Bay Delta authority, Sacramento, California, USAGoogle Scholar
  299. Wilkie JA, Hering JG (1998) Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada. Environ Sci Technol 32:657–662CrossRefGoogle Scholar
  300. Williams JW, Silver S (1984) Bacterial resistance and detoxification of heavy metals. Enzyme Microb Technol 12:530–537CrossRefGoogle Scholar
  301. Wu L (2004) Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. Ecotoxicol Environ Saf 57:257–269CrossRefGoogle Scholar
  302. Xu X, McGrath S, Zhao F (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599CrossRefGoogle Scholar
  303. Yadav SK, Juwarkar AA, Kumar GP, Thawale PR, Singh SK, Chakrabarti T (2009) Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresour Technol 100:4616–4622CrossRefGoogle Scholar
  304. Yamamura S, Watanabe M, Kanzaki M, Soda S, Ike M (2008) Removal of arsenic from contaminated soils by microbial reduction of arsenate and quinone. Environ Sci Technol 42:6154–6159CrossRefGoogle Scholar
  305. Yang T, Chen ML, Hu XW, Wang ZW, Wang JH, Dasgupta PK (2010) Thiolated eggshell ­membranes sorb and speciate inorganic selenium. Analyst 136:83–89CrossRefGoogle Scholar
  306. Yavuz H, Denizli A, Gungunes H, Safarikova M, Safarik I (2006) Biosorption of mercury on magnetically modified yeast cells. Sep Purif Technol 52:253–260CrossRefGoogle Scholar
  307. Yin XX, Chen J, Qin J, Sun GX, Rosen BP, Zhu YG (2011) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol 156:1631–1638CrossRefGoogle Scholar
  308. Yin Y, Impellitteri CA, You SJ, Allen HE (2002) The importance of organic matter distribution and extract soil: solution ratio on the desorption of heavy metals from soils. Sci Total Environ 287:107–119CrossRefGoogle Scholar
  309. Yoshinaga M, Cai Y, Rosen BP (2011) Demethylation of methylarsonic acid by a microbial community. Environ Microbiol 13:1205–1215CrossRefGoogle Scholar
  310. Yun YS, Park D, Park JM, Volesky B (2001) Biosorption of trivalent chromium on the brown seaweed biomass. Environ Sci Technol 35:4353–4358CrossRefGoogle Scholar
  311. Zayed AM, Terry N (1994) Selenium volatilization in roots and shoots: effects of shoot removal and sulfate level. J Plant Physiol 143:8–14CrossRefGoogle Scholar
  312. Zazo JA, Paull JS, Jaffe PR (2008) Influence of plants on the reduction of hexavalent chromium in wetland sediments. Environ Pollut 156:29–35CrossRefGoogle Scholar
  313. Zeng F, Chen S, Miao Y, Wu F, Zhang G (2008) Changes of organic acid exudation and rhizosphere pH in rice plant under chromium stress. Environ Pollut 155:284–289CrossRefGoogle Scholar
  314. Zeroual Y, Moutaouakkil A, Zohra Dzairi F, Talbi M, Ung Chung P, Lee K, Blaghen M (2003) Biosorption of mercury from aqueous solution by Ulva lactuca biomass. Bioresour Technol 90:349–351CrossRefGoogle Scholar
  315. Zhang H, Lindberg SE, Marsik FJ, Keeler GJ (2001) Mercury air/surface exchange kinetics of background soils of the Tahquamenon river watershed in the Michigan Upper Peninsula. Water Air Soil Pollut 126:151–169CrossRefGoogle Scholar
  316. Zhang J, Bishop PL (2002) Stabilization/solidification (S/S) of mercury-containing wastes using reactivated carbon and Portland cement. J Hazard Mater 92:199–212CrossRefGoogle Scholar
  317. Zhang T, Hsu-Kim H (2010) Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nat Geosci 3:473–476CrossRefGoogle Scholar
  318. Zhang Y, Frankenberger WT (2003) Factors affecting removal of selenate in agricultural drainage water utilizing rice straw. Sci Total Environ 305:207–216CrossRefGoogle Scholar
  319. Zhang YQ, Frankenberger WT (1999) Effects of soil moisture, depth, and organic amendments on selenium volatilization. J Environ Qual 28:1321–1326CrossRefGoogle Scholar
  320. Zouboulis A, Loukidou M, Matis K (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nanthi S. Bolan
    • 1
    • 2
    Email author
  • Girish Choppala
    • 1
    • 2
  • Anitha Kunhikrishnan
    • 3
  • Jinhee Park
    • 4
  • Ravi Naidu
    • 1
    • 2
  1. 1.Centre for Environmental Risk Assessment and RemediationUniversity of South AustraliaMawson LakesAustralia
  2. 2.Cooperative Research Centre for Contamination Assessment and Remediation of the EnvironmentAdelaideAustralia
  3. 3.Chemical Safety Division, Department of Agro-Food SafetyNational Academy of Agricultural ScienceSuwon-siRepublic of Korea
  4. 4.Centre for Mined Land Rehabilitation, University of QueenslandSt LuciaAustralia

Personalised recommendations