Skip to main content

Molecular Mechanisms of Pharmacoresistant Epilepsy

  • Chapter
  • First Online:
  • 1343 Accesses

Abstract

Epilepsy is a common neurological disorder and despite significant advances in therapy over recent decades, about 30–40 % of epileptic patients will remain refractory to pharmacological therapies despite optimized drug treatment. Taking a carefully reviewed definition of “drug-resistance” into account, two main concepts were proposed to explain the development of pharmacoresistance in epilepsy. The “target” hypothesis indicates that changes in the properties of the drug targets themselves may result in reduced sensitivity to antiepileptic drugs (AEDs). This hypothesis is supported by several pharmacodynamic modifications leading to loss of drugs’ effects in refractory epilepsy. However, it cannot explain the refractoriness observed after polytherapeutic trials using several recommended AEDs at appropriate doses. Consequently, a mechanism of multidrug resistance (MDR) as previously described in cancer could also explain—at least in part—the reason for this particular phenotype. The so-called “transporters” hypothesis suggests that functional over-expression of multidrug transporters in brain could reduce AEDs access to the central nervous system. Both mechanisms could be active simultaneously in refractory epilepsy and possibly also, not represent the only mechanisms involved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aronica E, Yankaya B, Troost D, van Vliet EA, Lopes da Silva FH, Gorter JA. Induction of neonatal sodium channel II and III alpha-isoform mRNAs in neurons and microglia after status epilepticus in the rat hippocampus. Eur J Neurosci. 2001;13:1261–6.

    Article  PubMed  CAS  Google Scholar 

  • Aronica E, Gorter JA, Jansen GH, van Veelen CW, van Rijen PC, Leenstra S, et al. Expression and cellular distribution of multidrug transporter proteins in two major causes of medically intractable epilepsy: focal cortical dysplasia and glioneuronal tumors. Neuroscience. 2003;118:417–29.

    Article  PubMed  CAS  Google Scholar 

  • Aronica E, Sisodiya SM, Gorter JA, Bartolomei F, Gastaldi M, Massacrier A, et al. Cerebral expression of drug transporters in epilepsy. Adv Drug Deliv Rev. 2012;64:919–29.

    Article  PubMed  CAS  Google Scholar 

  • Auzmendi J, Orozco-Suárez S, González-Trujano E, Rocha-Arrieta L, Lazarowski A (2008) P-glycoprotein (P-gp) contribute to depolarization of plasmatic membranes of hippocampal cells in a model of phenytoin-refractory seizures induced by pentyleneterazole (PTZ). V° Latin-American Congress of Epilepsy (ILAE), Montevideo (ROU)

    Google Scholar 

  • Bauer B, Hartz AM, Pekcec A, Toellner K, Miller DS, Potschka H. Seizure-induced up-regulation of p-glycoprotein at the blood–brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol. 2008;73:1444–53.

    Article  PubMed  CAS  Google Scholar 

  • Benbadis SR. Epileptic seizures and syndromes. Neurol Clin. 2001;19:251–70.

    Article  PubMed  CAS  Google Scholar 

  • Berg A, Shinnar S, Levy SR, Testa FM, Smith-Rapaport S, Beckerman B. Early development of intractable epilepsy in children: a prospective study. Neurology. 2001;56:1445–52.

    Article  PubMed  CAS  Google Scholar 

  • Combates N, Rzepka R, Pan Chen Y-N, Cohen D. NF-IL6, a member of the C/EBP family of transcription factors, binds and trans-activates the human MDR1 gene promoter. J Biol Chem. 1994;269:29715–9.

    PubMed  CAS  Google Scholar 

  • Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 2002;62:3387–94.

    PubMed  CAS  Google Scholar 

  • Cornwell MM, Smith DE. A signal transduction pathway for activation of the mdr1 promoter involves the protooncogene c-raf kinase. J Biol Chem. 1993;268:15347–50.

    PubMed  CAS  Google Scholar 

  • Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11:1156–66.

    Article  PubMed  CAS  Google Scholar 

  • Dombrowski SM, Desai SY, Marroni M, Cucullo L, Goodrich K, Bingaman W, et al. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia. 2001;42:1501–6.

    Article  PubMed  CAS  Google Scholar 

  • Elger C. Pharmacoresistance: modern concept and basic data derivated from human brain tissue. Epilepsia. 2003;44 Suppl 5:9–15.

    Article  PubMed  Google Scholar 

  • Ellerkmann RK, Remy S, Chen J, Sochivko D, Elger CE, Urban BW, et al. Molecular and functional changes in voltage-dependent Na+ channels following pilocarpine-induced status epilepticus in rat dentate granule cells. Neuroscience. 2003;119:323–33.

    Article  PubMed  CAS  Google Scholar 

  • Girardin F. Membrane transporter proteins: a challenge for CNS drug development. Dialogues Clin Neurosci. 2006;8:311–21.

    PubMed  Google Scholar 

  • Goldsmith M, Gudas J, Schneider E, Cowan K. Wild type p53 stimulates expression from the human multidrug resistance promoter in a p53-negative cell line. J Biol Chem. 1995;270:1894–8.

    Article  PubMed  CAS  Google Scholar 

  • Höcht C, Lazarowski A, Gonzalez N, Auzmendi J, Opezzo JA, Bramuglia G, et al. Nimodipine restores the altered hippocampal phenytoin pharmacokinetics in a refractory epileptic model. Neurosci Lett. 2007;413:168–72.

    Article  PubMed  Google Scholar 

  • Hughes JR. One of the hottest topics in epileptology: ABC proteins. Their inhibition may be the future for patients with intractable seizures. Neurol Res. 2008;30:920–5.

    Article  PubMed  CAS  Google Scholar 

  • Huguenard JR. Block of T-type calcium channels is an important action of succinimide antiabsence drugs. Epilepsy Curr. 2002;2:49–52.

    Article  PubMed  Google Scholar 

  • Kuo CC. A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels. Mol Pharmacol. 1998;54:712–21.

    PubMed  CAS  Google Scholar 

  • Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342:314–9.

    Article  PubMed  CAS  Google Scholar 

  • Kwan P, Sills GJ, Brodie MJ. The mechanisms of action of commonly used antiepileptic drugs. Pharmacol Ther. 2001;90:21–34.

    Article  PubMed  CAS  Google Scholar 

  • Laguens R, Lazarowski A, Cuniberti L, Vera Janavel G, Cabeza Meckert P, Yannarelli G, et al. Expression of the MDR-1 gene-encoded P-glycoprotein in cardiomyocytes of conscious sheep undergoing acute myocardial ischemia followed by reperfusion. J Histochem Cytochem. 2007;55:191–7.

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski A, Czornyj L. Potential role of multidrug resistant proteins in refractory epilepsy and antiepileptic drugs interactions. Drug Metabol Drug Interact. 2011;26(1):21–6.

    Article  PubMed  Google Scholar 

  • Lazarowski A, Sevlever G, Taratuto A, Massaro M, Rabinowicz A. Tuberous Sclerosis associated with MDR-1 expression and drug-resistant epilepsy. Pediatr Neurol. 1999;21:731–4.

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski A, Massaro M, Schteinschnaider A, Intruvini S, Sevlever G, Rabinowicz A. Neuronal MDR-1 gene expression and persistent low levels of anticonvulsants in a child with refractory epilepsy. Ther Drug Monit. 2004a;26:44–6.

    Article  PubMed  Google Scholar 

  • Lazarowski A, Ramos AJ, Garcia-Rivello H, Brusco A, Girardi E. Neuronal and glial expression of the multidrug resistance gene product in an experimental epilepsy model. Cell Mol Neurobiol. 2004b;24:77–85.

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski A, Lubieniecki F, Camarero S, Pomata H, Bartuluchi M, Sevlever G, Taratuto AL. Multidrug resistance proteins in tuberous sclerosis and refractory epilepsy. Pediatr Neurol. 2004c;30:102–6.

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski A, Caltana L, Merelli A, Rubio MD, Ramos AJ, Brusco A. Neuronal mdr-1 gene expression after experimental focal hypoxia: a new obstacle for neuroprotection? J Neurol Sci. 2007a;258(1–2):84–92.

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski A, Czornyj L, Lubienieki F, Girardi E, Vazquez S, D’Giano C. ABC transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy. Epilepsia. 2007b;48:140–9.

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Dallas S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev. 2001;53:569–96.

    PubMed  CAS  Google Scholar 

  • Löscher W. Mechanisms of drug resistance in status epilepticus. Epilepsia. 2007;48 Suppl 8:74–7.

    Article  PubMed  Google Scholar 

  • Lucas PT, Meadows LS, Nicholls J, Ragsdale DS. An epilepsy mutation in the beta1 subunit of the voltage-gated sodium channel results in reduced channel sensitivity to phenytoin. Epilepsy Res. 2005;64:77–84.

    Article  PubMed  CAS  Google Scholar 

  • Meldrum BS, Rogawski A. Molecular targets for antiepileptic drug development. Neurotherapeutics. 2007;4(1):18–61.

    Article  PubMed  CAS  Google Scholar 

  • Nicolas S, Cau P. Changes in the mRNAs encoding subtypes I, II and III sodium channel alpha subunits following kainate-induced seizures in rat brain. J Neurocytol. 1997;26:667–8.

    Article  PubMed  Google Scholar 

  • Potschka H. Transporter hypothesis of drug-resistant epilepsy: challenges for pharmacogenetic approaches. Pharmacogenomics. 2010;11(10):1427–38.

    Article  PubMed  CAS  Google Scholar 

  • Ramos AJ, Lazarowski A, Villar MJ, Brusco A. Transient expression of MDR-1/P-glycoprotein in a model of partial cortical devascularization. Cell Mol Neurobiol. 2004;24:101–7.

    Article  PubMed  CAS  Google Scholar 

  • Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain. 2006;129:18–35.

    Article  PubMed  Google Scholar 

  • Remy S, Gabriel S, Urban BW, Dietrich D, Lehmann TN, Elger CE, et al. A novel mechanism underlying drug-resistance in chronic epilepsy. Ann Neurol. 2003a;53:469–79.

    Article  PubMed  CAS  Google Scholar 

  • Remy S, Urban BW, Elger CE, Beck H. Anticonvulsant pharmacology of voltage-gated Na+ channels in hippocampal neurons of control and chronically epileptic rats. Eur J Neurosci. 2003b;17:2648–58.

    Article  PubMed  Google Scholar 

  • Rizzi M, Caccia S, Guiso G, Richichi C, Gorter JA, Aronica E, et al. Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance. J Neurosci. 2002;22:5833–9.

    PubMed  CAS  Google Scholar 

  • Robey RW, Lazarowski A, Bates SE. P-glycoprotein-a clinical target in drug-refractory epilepsy? Mol Pharmacol. 2008;73:1343–6.

    Article  PubMed  CAS  Google Scholar 

  • Roepe PD. What is the precise role of human MDR 1 protein in chemotherapeutic drug resistance? Curr Pharm Des. 2000;6:241–60.

    Article  PubMed  CAS  Google Scholar 

  • Rogawski M, Johnson M. Intrinsic severity as a determinant of antiepileptic drug refractoriness. Epilepsy Curr. 2008;8:127–30.

    Article  PubMed  Google Scholar 

  • Seegers U, Potschka H, Loscher W. Expression of the multidrug transporter P-glycoprotein in brain capillary endothelial cells and brain parenchyma of amygdala-kindled rats. Epilepsia. 2002;43:675–84.

    Article  PubMed  CAS  Google Scholar 

  • Sisodiya SM. Genetics of drug resistance. Epilepsia. 2005;46 Suppl 10:33–8.

    Article  PubMed  Google Scholar 

  • Sisodiya SM. Mechanisms of antiepileptic drug resistance. Curr Opin Neurol. 2007;16:197–201.

    Article  Google Scholar 

  • Sisodiya SM, Heffernan J, Squier MV. Over-expression of P-glycoprotein in malformations of cortical development. Neuroreport. 1999;10:3437–41.

    Article  PubMed  CAS  Google Scholar 

  • Su H, Sochivko D, Becker A, Chen J, Jiang Y, Yaari Y, et al. Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci. 2002;22:3645–55.

    PubMed  CAS  Google Scholar 

  • Temkin NR. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-­analysis of controlled trials. Epilepsia. 2001;42:515–24.

    Article  PubMed  CAS  Google Scholar 

  • Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia. 1995;36:1–6.

    Article  PubMed  CAS  Google Scholar 

  • van Vliet EA, van Schaik R, Edelbroek PM, Redeker S, Aronica E, Wadman WJ, et al. Inhibition of the multidrug transporter P-glycoprotein improves seizure control in phenytoin-treated chronic epileptic rats. Epilepsia. 2006;47:672–80.

    Article  PubMed  Google Scholar 

  • Vanoye C, Castro A, Pourcher T, Reuss L, Altenberg G. Phosphorylation of P-glycoprotein by PKA and PKC modulates swelling-activated Cl- currents. Am J Physiol. 1999;276:C370–8.

    PubMed  CAS  Google Scholar 

  • Wadkins RM, Roepe PD. Biophysical aspect of P-glycoprotein mediated multidrug resistance. Int Rev Cytol. 1997;171:121–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Lazarowski M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lazarowski, A., Czornyj, L. (2013). Molecular Mechanisms of Pharmacoresistant Epilepsy. In: Rocha, L., Cavalheiro, E. (eds) Pharmacoresistance in Epilepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6464-8_4

Download citation

Publish with us

Policies and ethics