Skip to main content

Genes Involved in Pharmacoresistant Epilepsy

  • Chapter
  • First Online:
Pharmacoresistance in Epilepsy

Abstract

This chapter is devoted to resistance to antiepileptic drugs (AEDs) and its genetic mechanisms. There are three general hypothesis proposed for pharmacoresistant epilepsy: (1) Target hypothesis, (2) Drug transporter hypothesis, and the (3) Intrinsic Severity Hypothesis (Gorter and Potschka, Jasper’s basic mechanisms of the epilepsies, 4th ed. National Center for Biotechnology Information (USA), Bethesda, MD, 2012).

In diagnosing poor response to treatment, it is also important to separate drug resistance from incorrect diagnosis of epilepsy syndrome for example: (a) Epilepsy caused by mutations in Glucose transporter gene 1 (GLUT1) being treated with valproate (VPA) worsens the seizures in this disease whereas replacement of glucose with ketogenic diet alleviates seizures and the glucose deficit in the central nervous system. (Klepper, Epilepsia 49(Suppl 8):46–49, 2008; Klepper et al., Neuropediatrics 40(5):207–210, 2009) (b) Genetic or idiopathic epilepsies such as Childhood Absence Epilepsy (CAE), Juvenile Myoclonic Epilepsy (JME) and Dravet’s Syndrome can be aggravated when treated with Na+ channel blockers (Genton, Brain Dev 22(2):75–80, 2000; Guerrini et al., Epilepsia 39(5):508–512, 1998; Thomas et al., Brain 129(Pt 5):1281–1292, 2006; Martínez-Juárez et al., Brain 129(Pt 5):1269–1280, 2006) and (c) Mitochondrial disorders can also be aggravated by VPA (Finsterer and Zarrouk Mahjoub, Expert Opin Drug Metab Toxicol 8(1):71–79, 2012).

Herein, we describe the three general hypothesis; we also summarize the “difficult to treat” genetic epilepsies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelman H. Puppet children: a report on three cases. Dev Med Child Neurol 1965;7:681–8.

    Article  PubMed  CAS  Google Scholar 

  • Beck H. Plasticity of antiepileptic drug targets. Epilepsia. 2007;48 Suppl 1:14–8.

    Article  PubMed  CAS  Google Scholar 

  • Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA. Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med. 1998;4(10):1166–72.

    Article  PubMed  CAS  Google Scholar 

  • Canevini MP, Sgro V, Zuffardi O, Canger R, Carrozzo R, Rossi E, et al. Chromosome 20 ring: a chromosomal disorder associated with a particular electroclinical pattern. Epilepsia. 1998;39(9):942–51.

    Article  PubMed  CAS  Google Scholar 

  • Cassidy SB, Thuline HC, Holm VA. Deletion of chromosome 15 (q11-13) in a Prader-Labhart-Willi syndrome clinic population. Am J Med Genet. 1984;17(2):485–95.

    Article  PubMed  CAS  Google Scholar 

  • Chan EM, Young EJ, Ianzano L, Munteanu I, Zhao X, Christopoulos CC, et al. Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nat Genet. 2003;35(2):125–7.

    Article  PubMed  CAS  Google Scholar 

  • Chioza B, Wilkie H, Nashef L, Blower J, McCormick D, Sham P, et al. Association between the alpha(1a) calcium channel gene CACNA1A and idiopathic generalized epilepsy. Neurology. 2001;56(9):1245–6.

    Article  PubMed  CAS  Google Scholar 

  • Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet. 2001;68(6):1327–32.

    Article  PubMed  CAS  Google Scholar 

  • Dobyns WB, Reiner O, Carrozzo R, Ledbetter DH. Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. JAMA. 1993;270(23):2838–42.

    Article  PubMed  CAS  Google Scholar 

  • Dombrowski SM, Desai SY, Marroni M, Cucullo L, Goodrich K, Bingaman W, et al. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia. 2001;42(12):1501–6.

    Article  PubMed  CAS  Google Scholar 

  • Dravet C. - Vie Med. Les epilepsies graves de l'enfant. 1978. - 543–548: Vol.8.

    Google Scholar 

  • Ellerkmann RK, Remy S, Chen J, Sochivko D, Elger CE, Urban BW, et al. Molecular and functional changes in voltage-dependent Na(+) channels following pilocarpine-induced status epilepticus in rat dentate granule cells. Neuroscience. 2003;119(2):323–33.

    Article  PubMed  CAS  Google Scholar 

  • Finsterer J, Zarrouk MS. Mitochondrial toxicity of antiepileptic drugs and their tolerability in mitochondrial disorders. Expert Opin Drug Metab Toxicol. 2012;8(1):71–9.

    Article  PubMed  CAS  Google Scholar 

  • Fu YH, Kuhl DP, Pizzuti A, Pieretti M, Sutcliffe JS, Richards S, et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell. 1991;67(6):1047–58.

    Article  PubMed  CAS  Google Scholar 

  • Ganesh S, Delgado-Escueta AV, Sakamoto T, Avila MR, Machado-Salas J, Hoshii Y, et al. Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum Mol Genet. 2002a;11(11):1251–62.

    Article  PubMed  CAS  Google Scholar 

  • Ganesh S, Delgado-Escueta AV, Suzuki T, Francheschetti S, Riggio C, Avanzini G, et al. Genotype-­phenotype correlations for EPM2A mutations in Lafora’s progressive myoclonus epilepsy: exon 1 mutations associate with an early-onset cognitive deficit subphenotype. Hum Mol Genet. 2002b;11(11):1263–71.

    Article  PubMed  CAS  Google Scholar 

  • Gastaldi M, Robaglia-Schlupp A, Massacrier A, Planells R, Cau P. mRNA coding for voltage-­gated sodium channel beta2 subunit in rat central nervous system: cellular distribution and changes following kainate-induced seizures. Neurosci Lett. 1998;249(1):53–6.

    Article  PubMed  CAS  Google Scholar 

  • Genton P. When antiepileptic drugs aggravate epilepsy. Brain Dev. 2000;22(2):75–80.

    Article  PubMed  CAS  Google Scholar 

  • Gorter JA, Potschka H. Drug Resistance in Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV editors. Jasper's Basic Mechanisms of the Epilepsies. 4th edition. Bethesda (MD): National Center for Biotechnology Information (US); 2012.

    Google Scholar 

  • Guerrini R, Dravet C, Genton P, Belmonte A, Kaminska A, Dulac O. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia. 1998;39(5):508–12.

    Article  PubMed  CAS  Google Scholar 

  • Harkin LA, McMahon JM, Iona X, Dibbens L, Pelekanos JT, Zuberi SM, et al. Infantile Epileptic Encephalopathy Referral Consortium, Sutherland G, Berkovic SF, Mulley JC, Scheffer IE. The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain. 2007;130(Pt 3):843–52.

    Article  PubMed  Google Scholar 

  • Jq M. Lissencephaly in 2 siblings. Neurology. 1963;13:841–50.

    Article  Google Scholar 

  • Klepper J. Glucose transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia. 2008;49 Suppl 8:46–9.

    Article  PubMed  Google Scholar 

  • Klepper J, Voit T. Facilitated glucose transporter protein type 1 (GLUT1) deficiency syndrome: impaired glucose transport into brain– a review. Eur J Pediatr. 2002;161(6):295–304.

    Article  PubMed  CAS  Google Scholar 

  • Klepper J, Scheffer H, Elsaid MF, Kamsteeg EJ, Leferink M, Ben-Omran T. Autosomal recessive inheritance of GLUT1 deficiency syndrome. Neuropediatrics. 2009;40(5):207–10.

    Article  PubMed  CAS  Google Scholar 

  • Kubota H, Ishihara H, Langmann T, Schmitz G, Stieger B, Wieser HG, et al. Distribution and functional activity of P-glycoprotein and multidrug resistance associated proteins in human brain microvascular endothelial cells in hippocampal sclerosis. Epilepsy Res. 2006;68(3):213–28.

    Article  PubMed  CAS  Google Scholar 

  • Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314–9.

    Article  PubMed  CAS  Google Scholar 

  • Kwan P, Brodie MJ. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy. Epilepsia. 2005;46(2):224–35.

    Article  PubMed  CAS  Google Scholar 

  • Kwan P, Poon WS, Ng HK, Kang DE, Wong V, Ng PW, et al. Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A: correlation among phenotype, genotype, and mRNA expression. Pharmacogenet Genomics. 2008;18(11):989–98.

    Article  PubMed  CAS  Google Scholar 

  • Kwan P, Li HM, Al-Jufairi E, Abdulla R, Gonzales M, Kaye AH, et al. Association between temporal lobe P-glycoprotein expression and seizure recurrence after surgery for pharmacoresistant temporal lobe epilepsy. Neurobiol Dis. 2010;39(2):192–7.

    Article  PubMed  CAS  Google Scholar 

  • Löscher W. Drug transporters in the epileptic brain. Epilepsia. 2007;48 Suppl 1:8–13.

    Article  PubMed  Google Scholar 

  • Löscher W, Poulter MO, Padjen AL. Major targets and mechanisms of antiepileptic drugs and major reasons for failure. Adv Neurol. 2006;97:417–27.

    PubMed  Google Scholar 

  • Martínez-Juárez IE, Alonso ME, Medina MT, Durón RM, Bailey JN, López-Ruiz M, et al. Juvenile myoclonic epilepsy subsyndromes: family studies and long-term follow-up. Brain. 2006;129(Pt 5):1269–80.

    Article  PubMed  Google Scholar 

  • Minassian BA, DeLorey TM, Olsen RW, Philippart M, Bronstein Y, Zhang Q, et al. Angelmansyndrome: correlations between epilepsy phenotypes and genotypes. Ann Neurol. 1998;43(4):485–93.

    Article  PubMed  CAS  Google Scholar 

  • Ohmori I, Ouchida M, Ohtsuka Y, Oka E, Shimizu K. Significant correlation of the SCN1A mutations and severe myoclonic epilepsy in infancy. Biochem Biophys Res Commun. 2002;295(1):17–23.

    Article  PubMed  CAS  Google Scholar 

  • Potschka H. Role of CNS efflux drug transporters in antiepileptic drug delivery: overcoming CNS efflux drug transport. Adv Drug Deliv Rev. 2012;64(10):943–52.

    Article  PubMed  CAS  Google Scholar 

  • Povey S, Burley MW, Attwood J, Benham F, Hunt D, Jeremiah SJ, et al. Two loci for tuberous sclerosis: one on 9q34 and one on 16p13. Ann Hum Genet. 1994;58(Pt 2):107–27.

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale DS, Avoli M. Sodium channels as molecular targets for antiepileptic drugs. Brain Res Brain Res Rev. 1998;26(1):16–28.

    Article  PubMed  CAS  Google Scholar 

  • Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain. 2006;129(Pt 1):18–35.

    PubMed  Google Scholar 

  • Remy S, Gabriel S, Urban BW, Dietrich D, Lehmann TN, Elger CE, et al. A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol. 2003;53(4):469–79.

    Article  PubMed  CAS  Google Scholar 

  • Rogawski MA, Johnson MR. Intrinsic severity as a determinant of antiepileptic drug refractoriness. Epilepsy Curr. 2008;8(5):127–30.

    Article  PubMed  Google Scholar 

  • Sánchez Alvarez JC, Serrano Castro PJ, Serratosa Fernández JM. Clinical implications of mechanisms of resistance to antiepileptic drugs. Neurologist. 2007;13(6 Suppl 1):S38–46.

    Article  PubMed  Google Scholar 

  • Schmidt D, Löscher W. Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia. 2005;46(6):858–77.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt D, Löscher W. New developments in antiepileptic drug resistance: an integrative view. Epilepsy Curr. 2009;9(2):47–52.

    Article  PubMed  Google Scholar 

  • Semah F, Ryvlin P. Can we predict refractory epilepsy at the time of diagnosis? Epileptic Disord. 2005;7 Suppl 1:S10–3.

    PubMed  Google Scholar 

  • Shahwan A, Farrell M, Delanty N. Progressive myoclonic epilepsies: a review of genetic and therapeutic aspects. Lancet Neurol. 2005;4(4):239–48.

    Article  PubMed  CAS  Google Scholar 

  • Shin HS, Cheong EJ, Choi S, Lee J, Na HS. T-type Ca2+ channels as therapeutic targets in the nervous system. Curr Opin Pharmacol. 2008;8(1):33–41.

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui A, Kerb R, Weale ME, Brinkmann U, Smith A, Goldstein DB, et al. Association of multidrug resistance in epilepsy with a polymorphism on the drug-transporter GEBE ABCB1. N Engl J Med. 2003;348(15):1442–8.

    Article  PubMed  CAS  Google Scholar 

  • Sills GJ, Mohanraj R, Butler E, McCrindle S, Collier L, Wilson EA, et al. Lack of association between the C3435T polymorphism in the human multidrug resistance (MDR1) gene and response to antiepileptic drug treatment. Epilepsia. 2005;46(5):643–7.

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Andermann E, Whitehouse WP, Harvey AS, Keene DL, Seni MH, Crossland KM, Andermann F, Berkovic SF, Scheffer IE. Severe myoclonic epilepsy of infancy: extended spectrum of GEFS+? Epilepsia. 2001;42:837–44.

    Article  PubMed  CAS  Google Scholar 

  • Sisodiya SM. Mechanisms of antiepileptic drug resistance. Curr Opin Neurol. 2003;16(2):197–201.

    Article  PubMed  CAS  Google Scholar 

  • Sisodiya SM, Lin WR, Harding BN, Squier MV, Thom M. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain. 2002;125(Pt 1):22–31.

    Article  PubMed  CAS  Google Scholar 

  • Tan NC, Heron SE, Scheffer IE, Pelekanos JT, McMahon JM, Vears DF, et al. Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy. Neurology. 2004;63(6):1090–2.

    Article  PubMed  CAS  Google Scholar 

  • Tate SK, Depondt C, Sisodiya SM, Cavalleri GL, Schorge S, Soranzo N, et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A. 2005;102(15):5507–12.

    Article  PubMed  CAS  Google Scholar 

  • Tate SK, Singh R, Hung CC, Tai JJ, Depondt C, Cavalleri GL, et al. A common polymorphism in the SCN1A gene associates with phenytoin serum levels at maintenance dose. Pharmacogenet Genomics. 2006;16(10):721–6.

    Article  PubMed  CAS  Google Scholar 

  • Thomas P, Valton L, Genton P. Absence and myoclonic status epilepticus precipitated by antiepileptic drugs in idiopathic generalized epilepsy. Brain. 2006;129(Pt 5):1281–92.

    Article  PubMed  Google Scholar 

  • Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia. 1995;36(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  • van Vliet EA, Redeker S, Aronica E, Edelbroek PM, Gorter JA. Expression of multidrug transporters MRP1, MRP2, and BCRP shortly after status epilepticus, during the latent period, and in chronic epileptic rats. Epilepsia. 2005;46(10):1569–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris E. Martínez-Juárez M.D. M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Martínez-Juárez, I.E., Hernández-Vanegas, L.E., Rodríguez y Rodríguez, N., León-Aldana, J.A., Delgado-Escueta, A.V. (2013). Genes Involved in Pharmacoresistant Epilepsy. In: Rocha, L., Cavalheiro, E. (eds) Pharmacoresistance in Epilepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6464-8_2

Download citation

Publish with us

Policies and ethics