Skip to main content

Part of the book series: Statistics for Social and Behavioral Sciences ((SSBS,volume 51))

  • 4236 Accesses

Abstract

In previous chapters we considered the variance of estimators in order to determine the sample size and allocation to the design strata. After the sample data are collected, estimates are made and their variances and standard errors (SEs) must be computed. An SE (square root of the estimated variance) is a basic measure of precision that can be used as a descriptive statistic, e.g., as part of a coefficient of variation (CV ), or for making inferences about population parameters via confidence intervals. Estimating SEs that faithfully reflect all sources of (or a significant portion of the) variability in a sample design and an estimator is our goal, but this can be complicated. This is especially true when several (random) weight adjustments described in Chaps 13 and 14 are used. For example, when an adjustment for nonresponse is applied and then weights are raked to population controls, both procedures contribute to the variance of an estimator in addition to the randomness due to selecting the initial sample itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Dippo C.S., Fay R.E., Morganstein D.R. (1984). Computing variances from complex samples with replicate weights. In: Proceedings of the Survey Research Methods Section, American Statistical Association, pp 489–494

    Google Scholar 

  • Efron B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. SIAM [Society for Industrial and Applied Mathematics], Philadelphia

    Google Scholar 

  • Efron B., Tibshirani R. (1998). An Introduction to the Bootstrap. CRC Press LLC, Boca Raton FL

    Google Scholar 

  • Fay R.E. (1984). Some properties of estimates of variance based on replication methods. In: Proceedings of the Survey Research Methods Section, American Statistical Association, pp 495–500

    Google Scholar 

  • Francisco C., Fuller W.A. (1991). Quantile estimation with a complex survey design. Annals of Statistics 19:454–469

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen M.H., Hurwitz W.H., Madow W.G. (1953a). Sample Survey Methods and Theory, Volume I. John Wiley & Sons, Inc., New York

    MATH  Google Scholar 

  • Judkins D. (1990). Fay’s method of variance estimation. Journal of Official Statistics 6:223–239

    Google Scholar 

  • Kang J.D.Y., Schafer J.L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science 22(4):523–539

    Article  MathSciNet  MATH  Google Scholar 

  • Kott P.S. (1999). Some problems and solutions with a delete-a-group jackknife. In: Federal Committee on Statistical Methodology Research Conference,Vol.4, U.S. Bureau of the Census, pp 129–135

    Google Scholar 

  • Kott P.S. (2001). The delete-a-group jackknife. Journal of Official Statistics 17(4):521–526

    Google Scholar 

  • Krewski D., Rao J.N.K (1981). Inference from stratified samples: Properties of the linearization, jackknife, and balanced repeated replication methods. Annals of Statistics 9:1010–1019

    Article  MathSciNet  MATH  Google Scholar 

  • Lu W., Brick J.M., Sitter R. (2006). Algorithms for constructing combined strata grouped jackknife and balanced repeated replications with domains. Journal of the American Statistical Association 101:1680–1692

    Article  MathSciNet  MATH  Google Scholar 

  • Lumley T. (2010). Complex Surveys. John Wiley & Sons, Inc., New York

    Book  Google Scholar 

  • McCarthy P.J. (1969). Pseudo-replication: Half-samples. Review of the International Statistical Institute 37:239–264

    Article  MATH  Google Scholar 

  • Rao J.N.K., Shao J. (1999). Modified balanced repeated replication for complex survey data. Biometrika 86(2):403–415

    Article  MathSciNet  MATH  Google Scholar 

  • Rao J.N.K., Wu C.F.J. (1985). Inference from stratified samples: Second-order analysis of three methods for nonlinear statistics. Journal of the American Statistical Association 80:620–630

    Article  MathSciNet  MATH  Google Scholar 

  • Rao J.N.K., Wu C.F.J. (1988). Resampling inference with complex survey data. Journal of the American Statistical Association 83:231–241

    Article  MathSciNet  MATH  Google Scholar 

  • RTI International (2012). SUDAAN Language Manual, Release 11.0. Research Triangle Park NC

    Google Scholar 

  • Rust K.F. (1984). Techniques for estimating variances for sample surveys. PhD thesis, University of Michigan, Ann Arbor MI, unpublished

    Google Scholar 

  • Rust K.F. (1985). Variance estimation for complex estimators in sample surveys. Journal of Official Statistics 1:381–397

    Google Scholar 

  • Saigo H., Shao J., Sitter R. (2001). A repeated half-sample bootstrap and balanced repeated replications for randomly imputed data. Survey Methodology 27(2): 189–196

    Google Scholar 

  • Särndal C., Swensson B., Wretman J. (1992). Model Assisted Survey Sampling. Springer, New York

    Book  MATH  Google Scholar 

  • Shao J., Sitter R. (1996). Bootstrap for imputed survey data. Journal of the American Statistical Association 91:1278–1288

    Article  MathSciNet  MATH  Google Scholar 

  • Sitter R. (1992). Comparing three bootstrap methods for survey data. The Canadian Journal of Statistics / La Revue Canadienne de Statistique 20:135–154

    Article  MathSciNet  MATH  Google Scholar 

  • Valliant R., Rust K.F. (2010). Degrees of freedom approximations and rules-of-thumb. Journal of Official Statistics 26:585–602

    Google Scholar 

  • Valliant R., Dorfman A.H., Royall R.M. (2000). Finite Population Sampling and Inference: A Prediction Approach. John Wiley & Sons, Inc., New York

    MATH  Google Scholar 

  • Valliant R., Brick J.M., Dever J.A. (2008). Weight adjustments for the grouped jackknife variance estimator. Journal of Official Statistics 24(3):469–488

    Google Scholar 

  • Westat (2007). WesVar 4.3 User?s Guide. Westat, Rockville MD, URL www.westat.com

  • Winter N. (2002). svr: Stata SurVey Replication package. URL http://faculty.virginia.edu/nwinter/progs/

  • Wolter K.M. (2007). Introduction to Variance Estimation, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Woodruff R.S. (1952). Confidence intervals for medians and other position measures. Journal of the American Statistical Association 47:635–646

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Valliant, R., Dever, J.A., Kreuter, F. (2013). Variance Estimation. In: Practical Tools for Designing and Weighting Survey Samples. Statistics for Social and Behavioral Sciences, vol 51. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6449-5_15

Download citation

Publish with us

Policies and ethics