Skip to main content

Distribution of Individuals

  • Chapter
  • First Online:
Distribution Ecology
  • 1672 Accesses

Abstract

The distribution of individuals is a field mainly studied by behavioural sciences. It is largely concerned with animals, although some models can be applied to plants. Behavioural ecologists study decision rules that follow non-sessile individuals on when to start a movement; speed and direction of a movement; sites at which to stop, forage, be vigilant, or rest; and time spent for each activity. The result of these behaviours is an individual pattern of habitat use. Measured along the life of an animal, this pattern demarcates a home range. This chapter begins with a description of movement strategies in animals as mechanisms that result in an individual pattern of distribution. It is followed by two sections that discuss two types of descriptive models of individual habitat use: home-range estimations and site suitability models. The analytical approach is presented in the following two sections, and it is based on foraging theory, which developed models to predict residence times in foraging areas and to resolve the trade-off between forage and defence against predators. The chapter concludes with an analysis of the expected distributions at equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abba AM, Cassini MH (2008) Ecology and conservation of three species of armadillos in the Pampean Region, Argentina. In: Vizcaino S, Loughry J (eds) Biology of the Xenarthra. University of Florida Press, Florida

    Google Scholar 

  • Abba AM, Cassini MH (2010) Ecological segregation between two sympatric species of armadillos (Xenarthra, Mammalia) with different masticatory morphology. Acta Theriol 55:35–44

    Google Scholar 

  • Anderson DJ (1982) The home range: a new nonparametric estimation technique. Ecology 63:103–112

    Google Scholar 

  • Baker RR (1978) The evolutionary ecology of animal migration. Hodder & Sotughton, London

    Google Scholar 

  • Bartumeus F, Levin SA (2008) Fractal intermittence in locomotion: linking animal behavior to statistical patterns of search. Proc Natl Acad Sci U S A 105:19072–19077

    Google Scholar 

  • Bartumeus F, Da Luz MGE, Viswanathan GM, Catalan J (2005) Animal search strategies: a quantitative random-walk analysis. Ecology 86:3078–3087

    Google Scholar 

  • Bascompte J, Vilà C (1997) Fractals and search paths in mammals. Landsc Ecol 12:13–221

    Google Scholar 

  • Baum WM (1981) Changing over and choice. In: Bradshaw CM, Szabadi E, Lowe CF (eds) Quantification of steady-state operant behaviour. Elsevier, Amsterdam, pp 118–135

    Google Scholar 

  • Bell AD (1984) Dynamic morphology: a contribution to plant population ecology. In: Dirzo R, Sarukhan J (eds) Perspectives on plant population ecology. Sinauer, Sunderland, pp 48–65

    Google Scholar 

  • Bell WJ (1991) Searching behavior: the behavioral ecology of finding resources. Chapman and Hall, New York

    Google Scholar 

  • Bennett ATD (1996) Do animals have cognitive maps? J Exp Biol 199:219–224

    Google Scholar 

  • Boyer D, Ramos Fernández G, Miramontes O, Mateos JL, Cocho G, Larralde H, Ramos H, Rojas F (2006) Scale-free foraging by primates emerges from their interaction with a complex environment. Proc R Soc Lond B 273:1743–1750

    Google Scholar 

  • Brown JS (1988) Patch use as an indicator of habitat preference, predation risk, and competition. Behav Ecol Sociobiol 22:37–47

    Google Scholar 

  • Burt WH (1943) Territoriality and home range concepts ad applied to mammals. J Mammal 24:346–352

    Google Scholar 

  • Cassini MH (1993) Searching strategies within food patches in the armadillo Chaetophractus vellerosus. Anim Behav 46:400–402

    Google Scholar 

  • Cassini MH, Krebs JR (1994) Behavioural responses to food addition by hedgehogs. Ecography 17:289–296

    Google Scholar 

  • Cassini MH, Kacelnik A, Segura ET (1990) The tale of the Screaming Hairy Armadillo, the Guinea Pig and the marginal value theorem. Anim Behav 39:1030–1050

    Google Scholar 

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 9:129–136

    Google Scholar 

  • Clayton NS, Krebs JR (1994) Hippocampal growth and attrition in birds affected by experience. Proc Natl Acad Sci U S A 91:7410–7414

    Google Scholar 

  • Dalziel BD, Morales JM, Fryxell JM (2008) Fitting probability distributions to animal movement trajectories: using artificial neural networks to link distance, resources, and memory. Am Nat 172:248–258

    Google Scholar 

  • Damschen EI, Brudvig LA, Haddad NM, Levey DJ, Orrock JL, Tewksbury JJ (2008) The movement ecology and dynamics of plant communities in fragmented landscapes. Proc Natl Acad Sci U S A 105:19078–19083

    Google Scholar 

  • de Kroon H, Visser EJW, Huber H, Mommer L, Hutchings MJ (2009) A modular concept of plant foraging behaviour: the interplay between local responses and systemic control. Plant Cell Environ 32:704–712

    Google Scholar 

  • Dixon KR, Chapman JA (1980) Harmonic mean measure of animal activity areas. Ecology 61:1040–1044

    Google Scholar 

  • Doncaster CP, Macdonald DW (1991) Drifting territoriality in the red fox Vulpes vulpes. J Anim Ecol 60:423–439

    Google Scholar 

  • Dukas R, Ratcliffe J (2009) Cognitive ecology II. The University of Chicago Press, Chicago

    Google Scholar 

  • Dussault C, Ouellet JP, Courtois R, Huot J, Breton L, Jolicoeur H (2005) Linking moose habitat selection to limiting factors. Ecography 28:619–628

    Google Scholar 

  • Dyer FC (1998) Cognitive exology of navigation. In: Dukas R (ed) Cognitive ecology. The evolutionary ecology of information processing and decision making. The University of Chicago Press, Chicago, pp 201–260

    Google Scholar 

  • Emery NJ, Clayton NS (2001) Effects of experience and social context on prospective caching strategies by scrub jays. Nature 414:443–446

    Google Scholar 

  • Getz WM, Saltz D (2008) A framework for generating and analyzing movement paths on ecological landscapes. Proc Natl Acad Sci U S A 105:19066–19071

    Google Scholar 

  • Giuggioli L, Bartumeus F (2010) Animal movement, search strategies and behavioural ecology: a cross-disciplinary way forward. J Appl Ecol 79:906–909

    Google Scholar 

  • Godley BJ, Blumenthal JM, Broderick AC, Coyne MS, Godfrey MH, Hawkes LA (2008) Satellite tracking of sea turtles: where have we been and where do we go next? Endanger Species Res 4:3–22

    Google Scholar 

  • Gould JL (1982) Ethology. The mechanisms and evolution of behavior. WW Norton, New York

    Google Scholar 

  • Greegor DH Jr (1985) Ecology of the little hairy armadillo Chaetophractus vellerosus. In: Montgomery GG (ed) The evolution and ecology of armadillos, sloths, and vermilinguas. Smithsonian Institution Press, Washington, DC, pp 397–405

    Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chischester

    Google Scholar 

  • Gurarie E, Andrews RD, Laidre KL (2009) A novel method for identifying behavioural changes in animal movement data. Ecol Lett 12:395–408

    Google Scholar 

  • Hayne DW (1949) Calculation of size of home range. J Mammal 30:1–18

    Google Scholar 

  • Herrnstein RJ (1961) Relative and absolute strength of responses as a function of frequency of reinforcement. J Exp Anal Behav 4:267–272

    Google Scholar 

  • Holyoak M, Casagrandi R, Nathan R, Revilla E, Splegel O (2008) Trends and missing parts in the study of movement ecology. Proc Natl Acad Sci U S A 105:19060–19065

    Google Scholar 

  • Hutchings MJ, de Kroon H (1994) Foraging in plants: the role of morphological plasticity in resource acquisition. Adv Ecol Res 25:159–238

    Google Scholar 

  • Jacob J, Brown JS (2000) Microhabitat use, giving-up densities and temporal activity as short- and long-term anti-predator behaviors in common voles. Oikos 91:131–138

    Google Scholar 

  • Jacobs LF, Schenk F (2003) Unpacking the cognitive map: the parallel map theory of hippocampal function. Psychol Rev 110:285–315

    Google Scholar 

  • Jander R (1975) Ecological aspects of spatial orientation. Annu Rev Syst Ecol 6:171–188

    Google Scholar 

  • Jarrel KF, McBride MJ (2008) The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6:466–476

    Google Scholar 

  • Jennrich RI, Turner FB (1969) Measurement of non-circular home range. J Theor Biol 22:227–237

    Google Scholar 

  • Keating KA, Cherry S (2004) Use and interpretation of logistic regression in habitat selection studies. J Wildl Manage 68:774–789

    Google Scholar 

  • Lohmann KJ, Putman NF, Lohmann CMF (2008) Geomagnetic imprinting: a unifiying hypothesis of long-distance natal homing in salmon and sea turtles. Proc Natl Acad Sci U S A 105:19096–19101

    Google Scholar 

  • Mandel JT, Bildsteinb KL, Bohrerc G, Winklera DW (2008) Movement ecology of migration in turkey vultures. Proc Natl Acad Sci U S A 105:19102–19107

    Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. WH Freeman, New York

    Google Scholar 

  • Medri I, Mourão G (2005) Home range of giant anteaters (Myrmecophaga tridactyla) in the Pantanal wetland, Brazil. J Zool (Lond) 266:365–375

    Google Scholar 

  • Morris PA (1991a) Hedgehogs Erinaceus europaeus. In: Corbet GB, Hams S (eds) The handbook of Bntish mammals. Blackwell, Oxford, pp 37–43

    Google Scholar 

  • Morris DW (1991b) On the evolutionary stability of dispersal to sink habitats. Am Nat 137:907–911

    Google Scholar 

  • Nathan R (2008) An emerging movement ecology paradigm. Proc Natl Acad Sci U S A 105:19050–19051

    Google Scholar 

  • Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A 105:19052–19059

    Google Scholar 

  • Nonacs P (2001) State dependent behavior and the Marginal Value Theorem. Behav Ecol 12:71–83

    Google Scholar 

  • Ovaskainen O, Smith AD, Osborne JL, Reynolds RD, Carreck NL, Martin AP, Niitepõld K, Hanski I (2008) Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance. Proc Natl Acad Sci U S A 105:19090–19095

    Google Scholar 

  • Oyugi JO, Brown JS (2003) Giving-up densities and habitat preference of European Starlings and American Robins. Condor 105:130–135

    Google Scholar 

  • Patterson TA, Basson M, Bravington MV, Gunn JS (2009) Classifying movement behaviour in relation to environmental conditions using hidden Markov models. J Anim Ecol 78:1113–1123

    Google Scholar 

  • Petty JT, Gary D, Grossman (2010) Giving-up densities and ideal pre-emptive patch use in a predatory benthic stream fish. Freshw Biol 55:780–793

    Google Scholar 

  • Powell RA (2000) Animal home ranges and territories and home range estimators. In: Boitani L, Fuller TK (eds) Research techniques in animal ecology: controversies and consequences. Columbia University Press, New York, pp 65–110

    Google Scholar 

  • Ramos-Fernández G, Mateos JL, Miramontes O, Larralde H, Cocho G, Ayala Orozco B (2004) Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi). Behav Ecol Sociobiol 55:223–230

    Google Scholar 

  • Shaw JH, Machado Neto J, Carter TS (1987) Behavior of free-living giant anteaters (Myrmecophaga tridactyla). Biotropica 19:255–259

    Google Scholar 

  • Slade AJ, Hutchings MJ (1987) The effects of nutrient availability on foraging in the clonal herb Glechoma hederacea. J Ecol 75:95–112

    Google Scholar 

  • Smouse PE, Focardi S, Moorcroft PR, Kie JG, Forester JD, Morales JM (2010) Stochastic modelling of animal movement. Philos Trans R Soc B 365:2201–2211

    Google Scholar 

  • Staddon JER (1983) Adaptive behaviour and learning. University of Cambridge Press, Cambridge

    Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Stephens DW, Brown JS, Ydenberg (2007) Foraging: behavior and ecology. The University of Chicago Press, Chicago

    Google Scholar 

  • Sutherland WJ (1996) From individual behaviour to population ecology. Oxford University Press, Oxford

    Google Scholar 

  • Tinbergen N (1963) On aims and methods in ethology. Z Tierpsychol 20:410–433

    Google Scholar 

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208

    Google Scholar 

  • Urbano F, Cagnacci F, Calenge C, Dettki H, Cameron A, Neteler M (2010) Wildlife tracking data management: a new vision. Philos Trans R Soc B 365:2177–2185

    Google Scholar 

  • Viswanathan GM, Buldyrev SV, Havlin S, da Luz MGE, Raposo EP, Stanley HE (1999) Optimizing the success of random searches. Nature 401:911–914

    Google Scholar 

  • Wroot AJ (1984) Feeding ecology of the European hedgehog, Erinaceus europaeus L. Ph D thesis, University of London, London

    Google Scholar 

  • Zhang HP, Be’er A, Florin EL, Swinney HL (2010) Collective motion and density fluctuations in bacterial colonies. Proc Natl Acad Sci U S A 107:13626–13630

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cassini, M.H. (2013). Distribution of Individuals. In: Distribution Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6415-0_2

Download citation

Publish with us

Policies and ethics