Skip to main content

Fractional Integration of the Product of Two Multivariables H-Function and a General Class of Polynomials

  • Conference paper
  • First Online:
Advances in Applied Mathematics and Approximation Theory

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 41))

Abstract

A significantly large number of earlier works on the subject of fractional calculus give interesting account of the theory and applications of fractional calculus operators in many different areas of mathematical analysis (such as ordinary and partial differential equations, integral equations, special functions, summation of series, etc.). The main object of the present paper is to study and develop the Saigo operators. First, we establish two results that give the images of the product of two multivariables H-function and a general class of polynomials in Saigo operators. On account of the general nature of the Saigo operators, multivariable H-functions and a general class of polynomials a large number of new and Known Images involving Riemann-Liouville and Erde’lyi-Kober fractional integral operators and several special functions notably generalized Wright hypergeometric function, Mittag-Leffler function, Whittaker function follow as special cases of our main findings. Results given by Kilbas, Kilbas and Sebastian, Saxena et al. and Gupta et al., follow as special cases of our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L.Debnath and D. Bhatta, Integral Transforms and Their Applications, Chapman and Hall/CRC Press, Boca Raton FL, 2006.

    Book  MATH  Google Scholar 

  2. K. C. Gupta, K. Gupta and A. Gupta, Generalized fractional integration of the product of two H-functions. J. Rajasthan Acad. Phy. Sci., 9(3), 203–212(2010).

    Google Scholar 

  3. S. L. Kalla, Integral operators involving Fox’s H-function I, Acta Mexicana Cienc. Tecn. 3, 117–122, (1969).

    MathSciNet  MATH  Google Scholar 

  4. S. L. Kalla, Integral operators involving Fox’s H-function II, Acta Mexicana Cienc. Tecn. 7, 72–79, (1969).

    MathSciNet  Google Scholar 

  5. S. L. Kalla and R. K. Saxena, Integral operators involving hypergeometric functions, Math. Z. 108, 231–234, (1969).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. L. Kalla and R. K. Saxena, Integral operators involving hypergeometric functions II, Univ. Nac. Tucumï¿\(\frac{1} {2}\)an, Rev. Ser., A24, 31–36, (1974).

    Google Scholar 

  7. A. A. Kilbas, Fractional calculus of the generalized Wright function, Fract.Calc.Appl.Anal.8 (2), 113–126, (2005).

    MathSciNet  MATH  Google Scholar 

  8. A. A. Kilbas and M. Saigo, H-transforms, theory and applications, Chapman & Hall/CRC Press, Boca Raton, FL, 2004.

    Book  MATH  Google Scholar 

  9. A. A. Kilbas and N. Sebastain, Generalized fractional integration of Bessel function of first kind, Integral transform and Spec. Funct. 19(12), 869–883,(2008).

    Article  MATH  Google Scholar 

  10. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, 204(North-Holland Mathematics), Elsevier, 540, 2006.

    Google Scholar 

  11. V. Kiryakova, Generalized Fractional Calculus and Applications, Longman Scientific & Tech., Essex, 1994.

    MATH  Google Scholar 

  12. V. Kiryakova, A brief story about the operators of the generalized fractional calculus, Fract. Calc. Appl. Anal. 11 (2), 203–220, (2008).

    MathSciNet  MATH  Google Scholar 

  13. E. R. Love, Some integral equations involving hypergeometric functions, Proc. Edin. Math. Soc. 15 (3), 169–198, (1967).

    Article  MathSciNet  MATH  Google Scholar 

  14. O. I. Marichev, Volterra equation of Mellin convolution type with a Horn function in the kernel (In Russian). Izv. AN BSSR Ser. Fiz.-Mat. Nauk 1, 128–129, (1974).

    Google Scholar 

  15. A. C. McBride, Fractional powers of a class of ordinary differential operators, Proc. London Math. Soc. (III) 45, 519–546, (1982).

    Article  MathSciNet  MATH  Google Scholar 

  16. K. S. Miller and B. Ross An Introduction to the Fractional Calculus and Differential Equations, A Wiley Interscience Publication, John Wiley and Sons Inc., New York, 1993.

    Google Scholar 

  17. T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math J.19, 7–15, (1971).

    MathSciNet  MATH  Google Scholar 

  18. M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ. 11, 135–143, (1978).

    MathSciNet  Google Scholar 

  19. M. Saigo, A certain boundary value problem for the Euler-Darboux equation I, Math.Japonica 24 (4), 377–385, (1979).

    MathSciNet  MATH  Google Scholar 

  20. M. Saigo, A certain boundary value problem for the Euler-Darboux equation II, Math. Japonica 25 (2), 211–220, (1980).

    MathSciNet  MATH  Google Scholar 

  21. S. Samko, A.Kilbas and O. Marichev Fractional Integrals and Derivatives. Theory and Applications, Gordon & Breach Sci. Publ., New York, 1993.

    Google Scholar 

  22. R. K. Saxena, J. Ram and D. L. Suthar, Fractional calculus of generalized Mittag-Leffler functions, J. India Acad. Math.(1),165–172,(2009).

    MathSciNet  Google Scholar 

  23. H. M. Srivastava, K.C. Gupta and S. P. Goyal, The H-function of One and Two Variables with Applications, South Asian Publications, New Delhi, Madras, 1982.

    Google Scholar 

  24. H. M. Srivastava, A contour integral involving Fox’s H-function, Indian J.Math.14, 1–6, (1972).

    MathSciNet  MATH  Google Scholar 

  25. H. M. Srivastava and N. P. Singh,The integration n of certain products of the multivariable H-function with a general class of polynomials, Rend. Circ. Mat. Palermo, 32, 157–187, (1983).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Agarwal, P. (2013). Fractional Integration of the Product of Two Multivariables H-Function and a General Class of Polynomials. In: Anastassiou, G., Duman, O. (eds) Advances in Applied Mathematics and Approximation Theory. Springer Proceedings in Mathematics & Statistics, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6393-1_23

Download citation

Publish with us

Policies and ethics