Skip to main content

Nonlocal Optimum Design

  • Chapter
  • First Online:
Design of Experiments in Nonlinear Models

Part of the book series: Lecture Notes in Statistics ((LNS,volume 212))

  • 2645 Accesses

Abstract

The design criteria considered in Chap. 5 for nonlinear models are local, in the sense that they depend on the choice of a prior nominal value θ 0 for the model parameters θ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a finite setting, i = 1 M μ i ϕ(ξ; θ (i)) can be interpreted as the Lagrange function for the maximization of ϕ MmO ( ⋅) with μ = (μ 1, , μ M ) the vector of Lagrange multipliers, restricted to sum to one; see Li and Fang [1997].

  2. 2.

    The term adaptive design would thus be more appropriate to describe the kind of problem we shall deal with, which has strong connections with adaptive control; see, e.g., Pronzato [2008]. Sequential design remains the usual denomination in the literature, however.

References

  • Bornkamp, B. (2011). Functional uniform priors for nonlinear modelling. Technical Report arXiv:1110.4400v1.

    Google Scholar 

  • Braess, D. and H. Dette (2007). On the number of support points of maximin and Bayesian optimal designs. Ann. Statist. 35(2), 772–792.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaloner, K. and K. Larntz (1989). Optimal Bayesian design applied to logistic regression experiments. J. Stat. Plann. Inference 21, 191–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaloner, K. and I. Verdinelli (1995). Bayesian experimental design: a review. Statist. Sci. 10(3), 273–304.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaudhuri, P. and P. Mykland (1993). Nonlinear experiments: optimal design and inference based likelihood. J. Amer. Statist. Assoc. 88(422), 538–546.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaudhuri, P. and P. Mykland (1995). On efficiently designing of nonlinear experiments. Statistica Sinica 5, 421–440.

    MathSciNet  MATH  Google Scholar 

  • Clarke, B. and A. Barron (1994). Jeffrey’s prior is asymptotically less favorable under entropy risk. J. Stat. Plann. Inference 41, 37–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D. and D. Hinkley (1974). Theoretical Statistics. London: Chapman & Hall.

    MATH  Google Scholar 

  • D’Argenio, D. (1990). Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments. Math. Biosci. 99, 105–118.

    Article  MathSciNet  MATH  Google Scholar 

  • Dembski, W. (1990). Uniform probability. J. Theoret. Probab. 3(4), 611–626.

    Article  MathSciNet  MATH  Google Scholar 

  • Eaton, M., A. Giovagnoli, and P. Sebastiani (1996). A predictive approach to the Bayesian design problem with application to normal regression models. Biometrika 83(1), 111–125.

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov, V. (1980). Convex design theory. Math. Operationsforsch. Statist. Ser. Statist. 11(3), 403–413.

    MathSciNet  MATH  Google Scholar 

  • Ford, I. and S. Silvey (1980). A sequentially constructed design for estimating a nonlinear parametric function. Biometrika 67(2), 381–388.

    Article  MathSciNet  MATH  Google Scholar 

  • Ford, I., D. Titterington, and C. Wu (1985). Inference and sequential design. Biometrika 72(3), 545–551.

    Article  MathSciNet  Google Scholar 

  • Gautier, R. and L. Pronzato (1998). Sequential design and active control. In N. Flournoy, W. Rosenberger, and W. Wong (Eds.), New Developments and Applications in Experimental Design, Lecture Notes — Monograph Series, vol. 34, pp. 138–151. Hayward: IMS.

    Google Scholar 

  • Gautier, R. and L. Pronzato (1999). Some results on optimal allocation in two–step sequential design. Biometrical Lett. 36(1), 15–30.

    MATH  Google Scholar 

  • Gautier, R. and L. Pronzato (2000). Adaptive control for sequential design. Discuss. Math. Probab. Stat. 20(1), 97–114.

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, I. (1998). On sequential designs in nonlinear problems. Biometrika 85(2), 496–503.

    Article  MathSciNet  MATH  Google Scholar 

  • Lai, T. (1994). Asymptotic properties of nonlinear least squares estimates in stochastic regression models. Ann. Statist. 22(4), 1917–1930.

    Article  MathSciNet  MATH  Google Scholar 

  • Lai, T. and C. Wei (1982). Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Ann. Statist. 10(1), 154–166.

    Article  MathSciNet  Google Scholar 

  • Li, X.-S. and S.-C. Fang (1997). On the entropic regularization method for solving min-max problems with applications. Math. Methods Oper. Res. 46, 119–130.

    Article  MathSciNet  MATH  Google Scholar 

  • Lindley, D. (1956). On a measure of information provided by an experiment. Ann. Math. Statist. 27, 986–1005.

    Article  MathSciNet  MATH  Google Scholar 

  • Müller, W. and B. Pötscher (1992). Batch sequential design for a nonlinear estimation problem. In V. Fedorov, W. Müller, and I. Vuchkov (Eds.), Model-Oriented Data Analysis II, Proc. 2nd IIASA Workshop, St Kyrik (Bulgaria), May 1990, pp. 77–87. Heidelberg: Physica Verlag.

    Google Scholar 

  • Pan, S., S. He, and X. Li (2007). Smoothing method for minimizing the sum of the r largest functions. Optim. Methods Softw. 22, 267–277.

    Article  MathSciNet  MATH  Google Scholar 

  • Parzen, E. (1979). Nonparametric statistical data modeling. J. Amer. Statist. Assoc. 74(365), 105–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Pilz, J. (1983). Bayesian Estimation and Experimental Design in Linear Regression Models, Volume 55. Leipzig: Teubner-Texte zur Mathematik. [Also published by Wiley, New York, 1991].

    Google Scholar 

  • Pronzato, L. (2008). Optimal experimental design and some related control problems. Automatica 44, 303–325.

    Article  MathSciNet  Google Scholar 

  • Pronzato, L. (2009a). Asymptotic properties of nonlinear estimates in stochastic models with finite design space. Statist. Probab. Lett. 79, 2307–2313.

    Article  MathSciNet  MATH  Google Scholar 

  • Pronzato, L. (2010a). One-step ahead adaptive D-optimal design on a finite design space is asymptotically optimal. Metrika 71(2), 219–238.

    Article  MathSciNet  MATH  Google Scholar 

  • Rojas, C., J. Welsh, G. Goodwin, and A. Feuer (2007). Robust optimal experiment design for system identification. Automatica 43, 993–1008.

    Article  MathSciNet  MATH  Google Scholar 

  • Rudin, W. (1987). Real and Complex Analysis. New York: McGraw-Hill. [3rd ed.].

    Google Scholar 

  • Scott, D. (1992). Multivariate Density Estimation. New York: Wiley.

    Book  MATH  Google Scholar 

  • Spokoinyi, V. (1992). On asymptotically optimal sequential experimental design. Advances in Soviet Math. 12, 135–150.

    MathSciNet  Google Scholar 

  • Wu, C. (1985). Asymptotic inference from sequential design in a nonlinear situation. Biometrika 72(3), 553–558.

    Article  MathSciNet  MATH  Google Scholar 

  • Wynn, H. (2004). Maximum entropy sampling and general equivalence theory. In A. Di Bucchianico, H. Läuter, and H. Wynn (Eds.), mODa’7 – Advances in Model–Oriented Design and Analysis, Proc. 7th Int. Workshop, Heeze (Netherlands), pp. 211–218. Heidelberg: Physica Verlag.

    Google Scholar 

  • Wynn, H. (2007). Bayesian information-based learning and majorization. Technical report, http://mucm.group.shef.ac.uk/index.html.

  • Yang, S.-S. (1985). A smooth nonparametric estimator of a quantile function. J. Amer. Statist. Assoc. 80(392), 1004–1011.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pronzato, L., Pázman, A. (2013). Nonlocal Optimum Design. In: Design of Experiments in Nonlinear Models. Lecture Notes in Statistics, vol 212. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6363-4_8

Download citation

Publish with us

Policies and ethics