Advertisement

Asymptotic Designs and Uniform Convergence

  • Luc Pronzato
  • Andrej Pázman
Chapter
  • 2.2k Downloads
Part of the Lecture Notes in Statistics book series (LNS, volume 212)

Abstract

In order to study the asymptotic properties of estimators, we need to indicate how the sequence of design points x 1, x 2, in \(\mathcal{X} \subset {\mathbb{R}}^{d}\) is generated, i.e., specify some properties of the experimental design.

Keywords

Weak Convergence Asymptotic Property Uniform Convergence Design Point Asymptotic Normality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andrews, D. (1987). Consistency in nonlinear econometric models: a generic uniform law of large numbers. Econometrica 55(6), 1465–1471.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Andrews, D. (1992). Generic uniform convergence. Econometric Theory 8, 241–257.MathSciNetCrossRefGoogle Scholar
  3. Bierens, H. (1994). Topics in Advanced Econometrics. Cambridge: Cambridge Univ. Press.zbMATHCrossRefGoogle Scholar
  4. Billingsley, P. (1995). Probability and Measure. New York: Wiley. [3rd ed.].Google Scholar
  5. Fourgeaud, C. and A. Fuchs (1967). Statistique. Paris: Dunod.zbMATHGoogle Scholar
  6. Jennrich, R. (1969). Asymptotic properties of nonlinear least squares estimation. Ann. Math. Statist. 40, 633–643.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Newey, W. (1991). Uniform convergence in probability and stochastic equicontinuity. Econometrica 9(4), 1161–1167.MathSciNetCrossRefGoogle Scholar
  8. Shiryaev, A. (1996). Probability. Berlin: Springer.Google Scholar
  9. van de Geer, S. (2000). Empirical Processes in M-estimation. Cambridge: Cambridge Univ. Press.Google Scholar
  10. van der Vaart, A. (1998). Asymptotic Statistics. Cambridge: Cambridge Univ. Press.zbMATHCrossRefGoogle Scholar
  11. van der Vaart, A. and J. Wellner (1996). Weak Convergence and Empirical Processes, with Applications to Statistics. New York: Springer.zbMATHCrossRefGoogle Scholar
  12. Wu, C. (1980). Characterizing the consistent directions of least squares estimates. Ann. Statist. 8(4), 789–801.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Luc Pronzato
    • 1
  • Andrej Pázman
    • 2
  1. 1.French National Center for Scientific Research (CNRS)University of NiceSophia AntipolisFrance
  2. 2.Department of Applied Mathematics and StatisticsComenius UniversityBratislavaSlovakia

Personalised recommendations