Advertisement

Introduction

  • Luc Pronzato
  • Andrej Pázman
Chapter
Part of the Lecture Notes in Statistics book series (LNS, volume 212)

Abstract

This book is about experiments; it concerns situations where we have to organize an experiment in order to gain some information about an object of interest. Fragments of this information can be obtained by making observations within some elementary experiments called trials. We shall confound the action of making an experiment with the variables that characterize this action and use the term experimental design for both.

Keywords

Linear Regression Model Design Measure Fisher Information Matrix Little Square Estimator Radial Basis Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Atkinson, A. and A. Donev (1992). Optimum Experimental Design. Oxford Univ. Press.Google Scholar
  2. Bartlett, P. (2003). Prediction algorithms: complexity, concentration and convexity. In Prep. 13th IFAC Symp. on System Identification, Rotterdam, pp. 1507–1517.Google Scholar
  3. Berlinet, A. and C. Thomas-Agnan (2004). Reproducing Kernel Hilbert Spaces in Probability and Statistics. Boston: Kluwer.zbMATHCrossRefGoogle Scholar
  4. Casella, G. (2008). Statistical Design. New York: Springer.zbMATHCrossRefGoogle Scholar
  5. Cheng, M.-Y., P. Hall, and D. Titterington (1998). Optimal design for curve estimation by local linear smoothing. Bernoulli 4(1), 3–14.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Cucker, F. and S. Smale (2001). On the mathematical foundations of learning. Bull. AMS 39(1), 1–49.MathSciNetCrossRefGoogle Scholar
  7. Fedorov, V. (1972). Theory of Optimal Experiments. New York: Academic Press.Google Scholar
  8. Fedorov, V. and P. Hackl (1997). Model-Oriented Design of Experiments. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  9. Gallant, A. (1987). Nonlinear Statistical Models. New York: Wiley.zbMATHCrossRefGoogle Scholar
  10. Goodwin, G. and R. Payne (1977). Dynamic System Identification: Experiment Design and Data Analysis. New York: Academic Press.zbMATHGoogle Scholar
  11. Hamilton, D. and D. Watts (1985). A quadratic design criterion for precise estimation in nonlinear regression models. Technometrics 27, 241–250.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statistical Learning. Data Mining, Inference and Prediction. Heidelberg: Springer.zbMATHGoogle Scholar
  13. Ivanov, A. (1997). Asymptotic Theory of Nonlinear Regression. Dordrecht: Kluwer.zbMATHCrossRefGoogle Scholar
  14. Jennrich, R. (1969). Asymptotic properties of nonlinear least squares estimation. Ann. Math. Statist. 40, 633–643.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Lai, T. and C. Wei (1982). Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Ann. Statist. 10(1), 154–166.MathSciNetCrossRefGoogle Scholar
  16. Ljung, L. (1987). System Identification, Theory for the User. Englewood Cliffs: Prentice Hall.zbMATHGoogle Scholar
  17. Montgomery, D. (1976). Design and Analysis of Experiments. New York: Wiley. [6th ed., 2005].Google Scholar
  18. Morris, M. and T. Mitchell (1995). Exploratory designs for computational experiments. J. Stat. Plann. Inference 43, 381–402.zbMATHCrossRefGoogle Scholar
  19. Pukelsheim, F. (1993). Optimal Experimental Design. New York: Wiley.Google Scholar
  20. Schaback, R. (2003). Mathematical results concerning kernel techniques. In Prep. 13th IFAC Symp. on System Identification, Rotterdam, pp. 1814–1819.Google Scholar
  21. Silvey, S. (1980). Optimal Design. London: Chapman & Hall.zbMATHCrossRefGoogle Scholar
  22. Tsybakov, A. (2004). Introduction à l’estimation non-paramétrique. Heidelberg: Springer.zbMATHGoogle Scholar
  23. Vapnik, V. (1998). Statistical Learning Theory. New York: Wiley.zbMATHGoogle Scholar
  24. Vazquez, E. (2005). Modélisation comportementale de systèmes nonlinéaires multivariables par méthodes à noyaux et applications. Ph.D. Thesis, Université Paris XI, Orsay, France.Google Scholar
  25. Walter, E. (1982). Identifiability of State-Space Models. Berlin: Springer Verlag.zbMATHCrossRefGoogle Scholar
  26. Walter, E. and L. Pronzato (1997). Identification of Parametric Models from Experimental Data. Heidelberg: Springer.zbMATHGoogle Scholar
  27. Wu, C. (1981). Asymptotic theory of nonlinear least squares estimation. Ann. Statist. 9(3), 501–513.MathSciNetzbMATHCrossRefGoogle Scholar
  28. Zarrop, M. (1979). Optimal Experiment Design for Dynamic System Identification. Heidelberg: Springer.zbMATHCrossRefGoogle Scholar
  29. Zhu, Z. and H. Zhang (2006). Spatial sampling design under the infill asymptotic framework. Environmetrics 17(4), 323–337.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Luc Pronzato
    • 1
  • Andrej Pázman
    • 2
  1. 1.French National Center for Scientific Research (CNRS)University of NiceSophia AntipolisFrance
  2. 2.Department of Applied Mathematics and StatisticsComenius UniversityBratislavaSlovakia

Personalised recommendations