Skip to main content

Intraoperative Damage Monitoring of Endoclamp Balloon Expansion Using Real-Time Finite Element Modeling

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

Endovascular clamping can be achieved by means of intraluminal occlusion with an Endoclamp balloon. Circumventing the need for opening the thoracic cage provides significant benefits in terms of reducing trauma for the patient. This procedure, however, induces risks of damage to the aortic lumen by way of over-expansion of the balloon, exposing the aortic tissue to unsafe levels of loading. Accurate estimates of the induced stress and consequent damage are required intraoperatively to warn the surgeon and mitigate the risk of injury.This paper proposes a method for intraoperative monitoring of the inflicted damage to the arterial tissue, by means of finite element modeling. The Total Lagrangian Explicit Dynamic (TLED) finite element (FE) formulation, capable of handling geometric and material nonlinearities, is used. A 2D plane strain formulation is used to additionally simplify and speed up the execution time by reducing the number of degrees of freedom involved, meanwhile retaining sufficient accuracy for the proposed application. A material model incorporating damage as an internal variable allowed tracking of the degree of injury to the artery. The large amount of computation needed to solve for the stress field is relieved by using dedicated massively parallel hardware. An Nvidia CUDA GPGPU (General Purpose Graphics Processing Unit) is employed to parallelize critical portions of the TLED algorithm. The accuracy of the solution is verified against an industry-proven FE package Abaqus. Results show significant speed-ups compared to Abaqus, thereby retaining a sufficient degree of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpentier, A., Loulmet, D., Le Bret, E., Haugades, B., Dassier, P., Guibourt, P.: [open heart operation under videosurgery and minithoracotomy. first case (mitral valvuloplasty) operated with success]. Comptes rendus de lAcadmie des sciences. Srie III, Sciences de la vie., vol. 319(3), pp. 21923 (1996)

    Google Scholar 

  2. Casselman, F.P., Van Slycke, S., Wellens, F., De Geest, R., Degrieck, I., Van Praet, F., Vermeulen, Y., Vanermen, H.: Mitral valve surgery can now routinely be performed endoscopically. Circulation 108(Suppl 1), II48–II54 (2003). [Online]. Available: http://dx.doi.org/10.1161/01.cir.0000087391.49121.ce

    Google Scholar 

  3. Farhat, F., Metton, O., Thivolet, F., Jegaden, O.: Comparison between 3 aortic clamps for video-assisted cardiac surgery: a histological study in a pig model. Heart Surg. Forum 9(3), E657–E660 (2006). [Online]. Available: http://dx.doi.org/10.1532/HSF98.2005-1101

  4. Zienkewicz, O., Taylor, R.: The Finite Element Method for Solid and Structural Mechanics, 6th edn. Elsevier, Butterworth Heineman (2005)

    Google Scholar 

  5. Miller, K., Joldes, G., Lance, D., Wittek, A.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Comm. Numer. Meth. Eng. 23(2), 121–134 (2007). [Online]. Available: http://dx.doi.org/10.1002/cnm.887

  6. Nvidia, CUDA C Programming Guide 4.2, Nvidia Corporation (2012). [Online]. Available: http://developer.nvidia.com/nvidia-gpu-computing-documentation

  7. Simo, J., Ju, J.: Strain- and stress-based continuum damage models. Int. J. Solid Stuct. 23, 821–840 (1987)

    Article  MATH  Google Scholar 

  8. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61, 1–48 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006)

    Article  Google Scholar 

  10. Famaey, N., Vander Sloten, J., Kuhl, E.: A three-constituent damage model for arterial clamping in computer-assisted surgery. Biomech. Model Mechanobiol. 12(1), 123–36 (2013). [Online]. Available: http://dx.doi.org/10.1007/s10237-012-0386-7

  11. Joldes, G.R., Wittek, A., Miller, K.: Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Med. Image Anal. 13(6), 912–919 (2009). [Online]. Available: http://dx.doi.org/10.1016/j.media.2008.12.001

  12. Belytschko, T., Hughes, T.J.R. (eds.): Computational Methods for Transient Analysis. In Computational Methods in Mechanics. Amsterdam-New York, North-Holland Publ. Co. ISBN 0-444-86479-2, 1, (1983)

    Google Scholar 

  13. Famaey, N., Verbeken, E., Vinckier, S., Willaert, B., Herijgers, P., Vander Sloten, J.: In vivo soft tissue damage assessment for applications in surgery. Med. Eng. Phys. 32(5), 437–443 (2010). [Online]. Available: http://dx.doi.org/10.1016/j.medengphy.2010.04.002

    Google Scholar 

  14. Famaey, N., Sommer, G., Vander Sloten, J., Holzapfel, G.A.: Arterial clamping: Finite element simulation and in vivo validation. J. Mech. Behav. Biomed. Mater. 12C, 107–118 (2012). [Online]. Available: http://dx.doi.org/10.1016/j.jmbbm.2012.03.010

  15. Wittek, A., Joldes, G., Couton, M., Warfield, S.K., Miller, K.: Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration. Prog. Biophys. Mol. Biol. 103(2–3), 292–303 (2010). [Online]. Available: http://dx.doi.org/10.1016/j.pbiomolbio.2010.09.001

Download references

Acknowledgements

The authors would like to thank Prof. K. Miller, Prof. A. Wittek and Dr. G. Joldes for considerable instruction and assistance with the details of the TLED algorithm. This research was funded by an FP7 STREP project, SCATh (www.scath.net), by an interdisciplinary research project of KU Leuven (IDO) and by the Research Foundation Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nele Famaey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Famaey, N., Štrbac, V., Vander Sloten, J. (2013). Intraoperative Damage Monitoring of Endoclamp Balloon Expansion Using Real-Time Finite Element Modeling. In: Wittek, A., Miller, K., Nielsen, P. (eds) Computational Biomechanics for Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6351-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6351-1_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6350-4

  • Online ISBN: 978-1-4614-6351-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics