Global Solutions to the 3-D Incompressible Inhomogeneous Navier–Stokes System with Rough Density

Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 84)


In this paper, we prove the global well-posedness of the 3-D incompressible inhomogeneous Navier–Stokes equations with initial data \(a_{0} \in \mathcal{M}(B_{p,1}^{-1+ \frac{3} {p} }({\mathbb{R}}^{3})),\) \(u_{0} = (u_{0}^{h},u_{0}^{3}) \in B_{p,1}^{-1+ \frac{3} {p} }({\mathbb{R}}^{3}),\) which satisfies
$$(\mu \|a_{0}\|_{ \mathcal{M}(B_{p,1}^{-1+ \frac{3} {p} })} +\| u_{0}^{h}\|_{ B_{p,1}^{-1+ \frac{3} {p} }})\exp (C_{0}\|u_{0}^{3}\|_{ B_{p,1}^{-1+ \frac{3} {p} }}^{2}\ /{\mu }^{2}) \leq c_{ 0}\mu $$
for some positive constants c 0, C 0 and \(\frac{3} {2} < p < 6.\) The novelty of this paper is to replace \(\|a_{0}\|_{ B_{q,1}^{ \frac{3} {q} }}\) in the smallness condition of [20] by the rough norm in the multiplier space \(\|a_{0}\|_{ \mathcal{M}(B_{p,1}^{-1+ \frac{3} {p} })}\) here.

Key words

Inhomogeneous Navier–Stokes equations Littlewood–Paley theory Wellposedness 



Part of this work was done when Marius Paicu was visiting Morningside Center of the Chinese Academy of Sciences in the Spring of 2012. We appreciate the hospitality of MCM and the financial support from the Chinese Academy of Sciences. P. Zhang is partially supported by NSF of China under Grant 10421101 and 10931007, the one hundred talents’ plan from Chinese Academy of Sciences under Grant GJHZ200829 and innovation grant from National Center for Mathematics and Interdisciplinary Sciences.


  1. 1.
    Abidi, H.: Équation de Navier–Stokes avec densité et viscosité variables dans l’espace critique. Rev. Mat. Iberoam. 23(2), 537–586 (2007)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Abidi, H., Paicu, M.: Existence globale pour un fluide inhomogéne. Ann. Inst. Fourier (Grenoble) 57, 883–917 (2007)Google Scholar
  3. 3.
    Abidi, H., Paicu, M.: Global existence for the magnetohydrodynamic system in critical spaces. In: Proceedings of the Royal Society of Edinburgh, Section A, Mathematics, 138, 447–476 (2008)MathSciNetMATHGoogle Scholar
  4. 4.
    Abidi, H., Gui, G., Zhang, P.: On the decay and stability to global solutions of the 3 − D inhomogeneous Navier–Stokes equations. Comm. Pure. Appl. Math. 64, 832–881 (2011)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Abidi, H., Gui, G., Zhang, P.: On the wellposedness of 3 − D inhomogeneous Navier–Stokes equations in the critical spaces. Arch. Ration. Mech. Anal. 204(1), 189–230 (2012)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Abidi, H., Gui, G., Zhang, P.: Comm. Pure. Appl. Math. 65(10), 1458–1480 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)Google Scholar
  8. 8.
    Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conducting gases. Comm. P. D. E. 26, 1183–1233 (2001)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Danchin, R.: Density-dependent incompressible viscous fluids in critical spaces. Proc. Roy. Soc. Edinburgh Sect. A 133, 1311–1334 (2003)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Danchin, R.: Local and global well-posedness results for flows of inhomogeneous viscous fluids. Adv. Differ. Equat. 9, 353–386 (2004)MathSciNetMATHGoogle Scholar
  11. 11.
    Danchin, R., Mucha, P.B.: A Lagrangian approach for the incompressible Navier–Stokes equations with variable density. Comm. Pure. Appl. Math. 65(10), 1458–1480 (2012)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Fujita, H., Kato, T.: On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gui, G., Zhang, P.: Stability to the global solutions of 3-D Navier–Stokes equations. Adv. Math. 225, 1248–1284 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Huang, J., Paicu, M., Zhang, P.: Global solutions to 2-D inhomogeneous Navier–Stokes system with general velocity (2012, preprint) arXiv:1212.3916Google Scholar
  15. 15.
    Kazhikov, A.V.: Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid (Russian). Dokl. Akad. Nauk SSSR 216, 1008–1010 (1974)MathSciNetGoogle Scholar
  16. 16.
    Ladyženskaja, O.A., Solonnikov, V.A.: The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids. (Russian) Boundary value problems of mathematical physics, and related questions of the theory of functions, 8. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 52, 52–109, 218–219 (1975)Google Scholar
  17. 17.
    Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 1. Incompressible models. Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, (1996)Google Scholar
  18. 18.
    Maz’ya, V., Shaposhnikova, T.: Theory of Sobolev multipliers. With applications to differential and integral operators. Grundlehren der mathematischen Wissenschaften, vol. 337. Springer, Berlin (2009)Google Scholar
  19. 19.
    Paicu, M., Zhang, P.: Global solutions to the 3-D incompressible anisotropic Navier–Stokes system in the critical spaces. Comm. Math. Phys. 307, 713–759 (2011)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Paicu, M., Zhang, P.: Global solutions to the 3-D incompressible inhomogeneous Navier–Stokes system. J. Funct. Anal. 262(8), 3556–3584 (2012)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Planchon, F.: Sur un inégalité de type Poincaré. C. R. Acad. Sci. Paris Sér. I Math. 330, 21–23 (2000)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Zhang, T.: Global wellposedness problem for the 3-D incompressible anisotropic Navier–Stokes equations in an anisotropic space. Comm. Math. Phys. 287, 211–224 (2009)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Academy of Mathematics & Systems ScienceChinese Academy of SciencesBeijingP. R. China
  2. 2.Institut de Mathématiques de BordeauxUniversité Bordeaux 1Talence CedexFrance
  3. 3.Academy of Mathematics & Systems Science and Hua Loo-Keng Key Laboratory of MathematicsThe Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations