Skip to main content

Schrödinger Equations in Modulation Spaces

  • Chapter
  • First Online:
Studies in Phase Space Analysis with Applications to PDEs

Abstract

We consider the linear propagator for Schrödinger equations with variable coefficients in \({\mathbb{R}}^{d}\). We show that it is bounded on some spaces arising in time–frequency analysis, known as modulation spaces. This generalizes recent results where the case of constant coefficients was considered.

2010 Mathematics Subject Classification: 35S30, 47G30, 42C15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asada, K., Fujiwara, D.: On some oscillatory transformation in \({L}^{2}({\mathbb{R}}^{n})\). Jpn. J. Math. 4, 299–361 (1978)

    MathSciNet  MATH  Google Scholar 

  2. Bényi, A., Grafakos, L., Gröchenig, K., Okoudjou, K.: A class of Fourier multipliers for modulation spaces. Appl. Comput. Harmonic Anal. 19, 131–139 (2005)

    Article  MATH  Google Scholar 

  3. Bényi, A., Gröchenig, K.: Okoudjou, K.A., Rogers, L.G.: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal. 246(2), 366–384 (2007)

    Google Scholar 

  4. Bényi, A., Okoudjou, K.A.: Local well-posedness of nonlinear dispersive equations on modulation spaces. Bull. Lond. Math. Soc. 41(3), 549–558 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bony, J.: Opérateurs intégraux de Fourier et calcul de Weyl-Hörmander (cas d’une métrique symplectique). (French) [Fourier integral operators and the Weyl-Hörmander calculus (case of a symplectic metric)] Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1994), Exp. No. IX, 14 pp., École Polytech., Palaiseau, 1994.

    Google Scholar 

  6. Bony, J.: Evolution equations and generalized Fourier integral operators. In: Advances in Phase Space Analysis of Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol. 78, pp. 59–72. Birkhäuser Boston Inc., Boston (2009)

    Google Scholar 

  7. Boggiatto, P., Cordero, E., Gröchenig, K.: Generalized Anti-Wick operators with symbols in distributional Sobolev spaces. Integr. Equat. Operat. Theor. 48, 427–442 (2004)

    Article  MATH  Google Scholar 

  8. Carathéodory, C.: Variationsrechnung und partielle Differentialglichungen erster Ordnung. Teubner, Berlin (1935); Leipzig (1956). English transl.: Holden-Day, San Francisco (1965)

    Google Scholar 

  9. Cordero, E., Nicola, F.: Metaplectic representation on Wiener amalgam spaces and applications to the Schrödinger equation. J. Funct. Anal. 254, 506–534 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cordero, E., Nicola, F.: Remarks on Fourier multipliers and applications to the wave equation. J. Math. Anal. Appl. 353(2), 583–591 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cordero, E., Nicola, F.: Boundedness of Schrödinger type propagators on modulation spaces. J. Fourier Anal. Appl. 16, 311–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cordero, E., Zucco, D.: The Cauchy Problem for the vibrating plate equation in modulation spaces. J. Pseudo-Differ. Operat. Appl. 2, 343–354 (2011). DOI: 10.1007/s11868-011-0032-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Cordero, E., Feichtinger, H., Luef, F.: Banach gelfand triples for gabor analysis. In: Pseudo-Differential Operators. Lecture Notes in Mathematics, vol. 1949, pp. 1–33. Springer, Berlin (2008)

    Google Scholar 

  14. Cordero, E., Gröchenig, K., Nicola, F., Rodino, L.: The Wiener property for a class of Fourier Integral Operators. Journal de mathématiques pures et appliquées 99 (2013), pp. 219–233 DOI:10.1016/j.matpur.2012.06.012

    Article  MATH  Google Scholar 

  15. Cordero, E., Nicola, F., Rodino, L.: Time-frequency analysis of Fourier integral operators. Commun. Pure Appl. Anal. 9(1), 1–21 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cordero, E., Nicola, F., Rodino, L.: Sparsity of Gabor representation of Schrödinger propagators. Appl. Comput. Harmon. Anal. 26(3), 357–370 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cordero, E., Nicola, F., Rodino, L.: Boundedness of Fourier integral operators on \(\mathcal{F}{L}^{p}\) spaces. Trans. Am. Math. Soc. 361(11), 6049–6071 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feichtinger, H.G.: Banach spaces of distributions of Wiener’s type and interpolation. In: Proceedings of the Conference on Functional Analysis and Approximation, Oberwolfach August 1980. International Series in Numerical Mathematics, vol. 69, pp. 153–165. Birkhäuser, Boston (1981)

    Google Scholar 

  19. Feichtinger, H.G.: Banach convolution algebras of Wiener’s type. In: Proceedings of the Conference on “Function, Series, Operators”, Budapest August 1980. Colloquia Mathematical Society János Bolyai, vol. 35, pp. 509–524. North-Holland, Amsterdam (1983)

    Google Scholar 

  20. Feichtinger, H.G.: Modulation spaces on locally compact abelian groups. Technical Report, University Vienna, 1983, and also In: Krishna, M., Radha, R., Thangavelu, S. (eds.) Wavelets and Their Applications, pp. 99–140. Allied Publishers, New Delhi (2003)

    Google Scholar 

  21. Feichtinger, H.G.: Atomic characterizations of modulation spaces through Gabor-type representations. Rocky Mountain J. Math. 19, 113–126 (1989). Proceedings of the Conference on Constructive Function Theory

    Google Scholar 

  22. Feichtinger, H.G.: Generalized amalgams, with applications to Fourier transform. Can. J. Math. 42(3), 395–409 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feichtinger, H.G., Gröchenig, K.: Gabor frames and time–frequency analysis of distributions. J. Funct. Anal. 146(2), 464–495 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions I. J. Funct. Anal. 86(2), 307–340 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feichtinger, H.G., Gröchenig, K.H.: Banach spaces related to integrable group representations and their atomic decompositions II. Monatsh. Math. 108, 129–148 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Galperin, Y.V., Samarah, S.: Time-frequency analysis on modulation spaces M m p, q, 0 < p, q ≤ . Appl. Comp. Harmonic Anal. 16, 1–18 (2004)

    Google Scholar 

  27. Gröchenig, K.: Foundations of Time–Frequency Analysis. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  28. Gröchenig, K., Heil, C.: Modulation spaces and pseudodifferential operators. Integr. Equat. Oper. Theor. 34, 439–457 (1999)

    Article  Google Scholar 

  29. Gröchenig, K., Heil, C.: Counterexamples for boundedness of pseudodifferential operators. Osaka J. Math. 41, 681–691 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Gröchenig, K., Leinert, M.: Wiener’s lemma for twisted convolution and Gabor frames. J. Am. Math. Soc. 17, 1–18 (2004)

    Article  MATH  Google Scholar 

  31. Heil, C.: An introduction to weighted Wiener amalgams. In: Krishna, M., Radha, R., Thangavelu, S. (eds.) Wavelets and Their Applications, pp. 183–216. Allied Publishers Private Limited, New Delhi (2003)

    Google Scholar 

  32. Helffer, B.: Théorie Spectrale pour des Operateurs Globalement Elliptiques. Astérisque, Société Mathématique de France (1984)

    MATH  Google Scholar 

  33. Helffer, B., Robert, D.: Comportement Asymptotique Precise du Spectre d’Operateurs Globalement Elliptiques dans ℝ d. Sem. Goulaouic-Meyer-Schwartz 1980–81. École Polytechnique, Exposé II (1980)

    Google Scholar 

  34. Kobayashi, M., Sugimoto, M., Tomita, N.: Trace ideals for pseudo-differential operators and their commutators with symbols in α-modulation spaces. J. Anal. Math. 107, 141–160 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kobayashi, M., Sugimoto, M., Tomita, N.: On the L 2-boundedness of pseudo-differential operators and their commutators with symbols in α-modulation spaces. J. Math. Anal. Appl. 350(1), 157–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Krantz, S.G., Parks, H.R.: The Implicit Function Theorem. Birkhäuser Boston Inc., Boston (2002)

    MATH  Google Scholar 

  37. Labate, D.: Pseudodifferential operators on modulation spaces. J. Math. Anal. Appl. 262, 242–255 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Miyachi, A., Nicola, F., Rivetti, S., Tabacco, A., Tomita, N.: Estimates for unimodular Fourier multipliers on modulation spaces. Proc. Am. Math. Soc. 137, 3869–3883 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory, 2nd edn. Springer, Berlin (2001). Translated from the 1978 Russian original by Stig I. Andersson

    Google Scholar 

  40. Sjöstrand, J.: An algebra of pseudodifferential operators. Math. Res. Lett. 1, 185–192 (1994)

    MathSciNet  MATH  Google Scholar 

  41. Sugimoto, M., Tomita, N.: A counterexample for boundedness of pseudo-differential operators on modulation spaces. Proc. Am. Math. Soc. 136(5), 1681–1690 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sugimoto, M., Tomita, N.: Boundedness properties of pseudo-differential and Calderón-Zygmund operators on modulation spaces. J. Fourier Anal. Appl. 14(1), 124–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tataru, D.: Phase space transforms and microlocal analysis. Phase Space Analysis of Partial Differential Equations, vol. II, pp. 505–524. Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa (2004)

    Google Scholar 

  44. Triebel, H.: Modulation spaces on the Euclidean n-spaces. Z. Anal. Anwendungen 2, 443–457 (1983)

    MathSciNet  MATH  Google Scholar 

  45. Wang, B., Huang, C.: Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations. J. Differ. Equat. 239(1), 213–250 (2007)

    Article  MATH  Google Scholar 

  46. Wang, B., Lifeng, Z., Boling, G.: Isometric decomposition operators, function spaces E p, q λ and applications to nonlinear evolution equations. J. Funct. Anal. 233(1), 1–39 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Cordero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cordero, E., Nicola, F., Rodino, L. (2013). Schrödinger Equations in Modulation Spaces. In: Cicognani, M., Colombini, F., Del Santo, D. (eds) Studies in Phase Space Analysis with Applications to PDEs. Progress in Nonlinear Differential Equations and Their Applications, vol 84. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-6348-1_5

Download citation

Publish with us

Policies and ethics