Quantum Walks on Finite Graphs

  • Renato Portugal
Part of the Quantum Science and Technology book series (QST)


In this chapter, we calculate the state of quantum walks on cycles, finite two-dimensional lattices, and hypercubes. The cycle is the finite version of the line. The finite lattice is the two-dimensional version of the cycle with the form of a torus. Finally, the hypercube is a generalization of the cube to dimensions greater than three. These graphs are basic ones but have interesting properties. They can be analyzed by means of the Fourier transform, allowing analytical calculations, which have many useful by-products in other contexts. In particular, the spectral decomposition of the quantum-walk evolution operator can be used in spatial search algorithms on these graphs. The spectral decomposition is described in details in this chapter.


Quantum Walk Spatial Search Algorithm Coin Space CO-OPERATION IN Hamming Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3.
    Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of 33th STOC, pp. 50–59. ACM, New York (2001)Google Scholar
  2. 13.
    Bednarska, M., Grudka, A., Kurzynski, P., Luczak, T., Wójcik, A.: Quantum walks on cycles. Phys. Lett. A 317(1–2), 21–25 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 14.
    Bednarska, M., Grudka, A., Kurzynski, P., Luczak, T., Wójcik, A.: Examples of non-uniform limiting distributions for the quantum walk on even cycles. Int. J. Quant. Inform. 2(4), 453–459 (2004)zbMATHCrossRefGoogle Scholar
  4. 43.
    Kempe, J.: Discrete quantum walks hit exponentially faster. Probab. Theor. Relat. Field. 133(2), 215–235 (2005), quant-ph/0205083Google Scholar
  5. 49.
    Mackay, T.D., Bartlett, S.D., Stephenson, L.T., Sanders, B.C.: Quantum walks in higher dimensions. J. Phys. A: Math. General 35(12), 2745 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 59.
    Moore, C., Russell, A.: Quantum walks on the hypercube. In: Rolim, J.D.P., Vadhan, S. (eds.) Proceedings of Random 2002, pp. 164–178. Springer, Cambridge (2002)Google Scholar
  7. 76.
    Travaglione, B.C., Milburn, G.J.: Implementing the quantum random walk. Phys. Rev. A 65(3), 032310 (2002)ADSCrossRefGoogle Scholar
  8. 77.
    Tregenna, B., Flanagan, W., Maile, R., Kendon, V.: Controlling discrete quantum walks: coins and initial states. New J. Phys. 5(1), 83 (2003), quant-ph/0304204Google Scholar
  9. 80.
    Venegas-Andraca, S.E.: Quantum Walks for Computer Scientists. Morgan and Claypool Publishers, San Rafael (2008)Google Scholar
  10. 81.
    Štefaňák, M., Kollár, B., Kiss, T., Jex, I.: Full revivals in 2d quantum walks. Phys. Scripta 2010(T140), 014035 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Renato Portugal
    • 1
  1. 1.Department of Computer ScienceNational Laboratory of Scientific Computing (LNCC)PetrópolisBrazil

Personalised recommendations