Skip to main content

Nonnegative Matrices

  • Chapter
  • First Online:
The Mathematics of Frobenius in Context

Abstract

This final chapter on Frobenius’ mathematics is devoted to the paper he submitted to the Berlin Academy on 23 May 1912 with the title “On matrices with nonnegative elements” [231].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In what follows, such matrices A will be called nonnegative, and this property will be indicated with the notation A ≥ 0. Similarly, A > 0 will mean that all the elements of A are positive.

  2. 2.

    The present chapter is based upon my paper [278], which contains more details, especially regarding the work of Perron and Markov.

  3. 3.

    For details on Perron’s life and family background see [166].

  4. 4.

    The information about Pringsheim is based on Perron’s memorial essay [470].

  5. 5.

    For an overview of the history of continued fractions, see [39]. On the connection with the Euclidean algorithm, see also [278, pp. 665ff.].

  6. 6.

    The relation (17.22) (without the matrix symbolism) is the special case of Perron’s formula (9) [467, p. 7] that arises when Perron’s λ is taken to be the period p of a purely periodic algorithm.

  7. 7.

    See Satz II [467, p. 12], which establishes more than I have stated below in Theorem 17.5.

  8. 8.

    For an exposition of this historic proof, see [278, Appendix 6.1].

  9. 9.

    Perron gave only a proof of (1), from which (2) and (3) follow easily. Regarding his proof of (1), see [278, p. 675, n. 15].

  10. 10.

    Let M, a, b,  be the distinct absolute values of the roots \(\rho _{0},\rho _{1},\ldots,\rho _{n}\). Then the numerator of (17.27) can be expressed as \({M}^{\nu +1}\alpha _{\nu +1} + {a}^{\nu +1}\beta _{\nu +1} + {b}^{\nu +1}\gamma _{\nu +1} + \cdots \) , where each of \(\alpha _{\nu +1},\beta _{\nu +1},\gamma _{\nu +1}\) is a sum of at most n + 1 complex numbers of absolute value 1. Thus each of \(\alpha _{\nu +1},\beta _{\nu +1},\gamma _{\nu +1}\) has absolute value at most n + 1. Likewise, the denominator of (17.27) is expressible as \({M}^{\nu }\alpha _{\nu } + {a}^{\nu }\beta _{\nu } + {b}^{\nu }\gamma _{\nu } + \cdots \), with each of \(\alpha _{\nu },\beta _{\nu },\gamma _{\nu }\) having absolute value at most n + 1. Thus the ratio in (17.27) that is under the limit operation, on division of the numerator and denominator by M ν, is

    $$\displaystyle{\frac{M\alpha _{\nu +1} + a{(a/M)}^{\nu }\beta _{\nu +1} + b{(b/M)}^{\nu }\gamma _{\nu +1} + \cdots } {\alpha _{\nu } + {(a/M)}^{\nu }\beta _{\nu } + {(b/M)}^{\nu }\gamma _{\nu } + \cdots }.}$$

    Clearly, all the terms in the numerator except the first approach 0 as ν → . Likewise, all the terms in the denominator except the first approach 0 as ν → . Thus, assuming the limit ρ′ exists in (17.27), we see that \(\rho ^{\prime} =\lim _{\nu \rightarrow \infty }M(\alpha _{\nu +1}/\alpha _{\nu }) =\lim _{\nu \rightarrow \infty }({M}^{\nu +1}\alpha _{\nu +1})/({M}^{\nu }\alpha _{\nu })\), which is to say that only the roots of absolute value M contribute to the limiting value ρ′.

  11. 11.

    The “known theorem” was presumably that increasing (respectively, decreasing) sequences of real numbers that are bounded above (respectively, below) converge.

  12. 12.

    It does not seem that Perron was seeking a purely algebraic proof of his theorem in the sense of a proof that was completely free of propositions from analysis. For example, he never expressed a similar dissatisfaction with his proof of his seminal Lemma 17.6, despite the fact that it repeatedly invoked basic theorems from analysis such as the intermediate value theorem for continuous functions [278, Appendix 6.1]. The intermediate value theorem was also invoked in Frobenius’ proof of Perron’s theorem. It should also be noted that although Frobenius took up the challenge of a determinant-based proof of Perron’s theorem, as a student of Weierstrass, he was not averse to employing results from complex analysis, notably Laurent expansions, in his proofs of theorems about matrices (as in Sections 7.5.17.5.5, and16.1.5).

  13. 13.

    In proving Lemma 17.6, Perron could have used the weaker induction hypothesis Adj (ρ 0 I − A) > 0 but did not, thereby unnecessarily complicating his proof; see [278, Appendix 6.1].

  14. 14.

    In his Habilitationsschrift, Perron had defined the characteristic polynomial of A as det(A − ρI) [467, p. 30], but in his paper on matrices [468, p. 249], he defined it as det(ρI − A), which was more in keeping with the fact that it is Adj (ρ 0 I − A) that is positive in Perron’s theorem.

  15. 15.

    Thus, e.g., in the limit, Adj (ρ 0 I − A) > 0 for A > 0 becomes Adj (ρ 0 I − A) ≥ 0 for A ≥ 0. In particular, the (α, α) entry of Adj (ρ 0 I − A), namely \(\varphi _{\alpha \alpha }(\rho _{0})\), is nonnegative; and since by (17.28), \(\varphi ^{\prime}(\rho _{0})\) is the sum of all the \(\varphi _{\alpha \alpha }(\rho _{0})\), it follows that \(\varphi ^{\prime}(\rho _{0}) \geq 0\) with \(\varphi ^{\prime}(\rho _{0}) = 0\) only if all \(\varphi _{\alpha \alpha }(\rho _{0})\) vanish, thereby giving the above necessary condition for ρ 0 to be a multiple root.

  16. 16.

    Two such present-day applications—Markov chains and input–output-type economic analysis—existed at the time of Frobenius’ work on positive and nonnegative matrices (1908–1912). Markov introduced the eponymous chains in 1908 (see Section 17.3), and the mathematician Maurice Potron announced an economic theory analogous to input–output analysis in 1911 [487, 488] with details given in 1913 [489]. Although Frobenius was apparently unaware of these developments, it is of interest to note that neither Markov nor Potron ascribed an importance to nonnegative characteristic vectors in their respective applications. For further general information about Potron, whose work remained unappreciated until recently, see [1, 17, 18]. Note also that Wilfried Parys is working on an annotated Potron bibliography and on historical aspects of Perron–Frobenius theory in economics.

  17. 17.

    A principal minor determinant of ρ 0 I − A of degree n − k is one obtained by deleting the same k rows and columns of ρ 0 I − A, e.g., by deleting the first k rows and the first k columns.

  18. 18.

    What Frobenius used, without any explanation, was the fact that if B is any matrix and Adj (B) = (β i j ), then detB = 0 implies \(\beta _{ij}\beta _{ji} =\beta _{ii}\beta _{jj}\) for all i ≠ j. Since when \(B =\rho _{0}I - A\), β ii and β j j are positive (being principal minors), it follows from \(\beta _{ij}\beta _{ji} =\beta _{ii}\beta _{jj}\) that β i j and β ji are not just nonnegative but positive. The identity \(\beta _{ij}\beta _{ji} =\beta _{ii}\beta _{jj}\) follows from a very special case of a well-known identity due to Jacobi [13, p. 50]. It also follows readily from the more basic identity \(B \cdot \mathrm{Adj}\,(B) = (\det B)I\), which when detB = 0 implies rankAdj (B) ≤ 1, and so all 2 ×2 minors of Adj (B) must vanish. (Viewed in modern terms, B ⋅Adj (B) = 0 means that the range of Adj (B) is contained in the null space of B. When 0 is a simple root of B, this means that rankAdj B ≤ 1.)

  19. 19.

    Presumably for this reason, Theorem 17.16 is not stated by Frobenius as a formal theorem, although it is alluded to in his prefatory remarks. The proof is given on pp. 549–550 of [231].

  20. 20.

    In terms of the graph-theoretic characterization of irreducibility given above in a footnote to Frobenius’ official definition, G(A) is a directed n-cycle and so connected.

  21. 21.

    In his 1878 paper, (17.40) is presented divided through by \(\varphi (s)\) so as to give a formula for \({(sI - A)}^{-1}\) [181, p. 358, (4)].

  22. 22.

    See e.g., pp. 569, 571 and 576 of the English translation by Petelin. In what is to follow, all page references will he to this translation (cited in the bibliographic reference for Markov’s 1908 paper [431]).

  23. 23.

    If x is a characteristic vector for ρ and m = max i  | x i  | , let i 0 be such that \(\vert x_{i_{0}}\vert = m\). Then the i 0th equation of ρI = P x is \(\rho x_{i_{0}} =\sum _{ j=1}^{n}p_{i_{0}j}x_{j}\). Taking absolute values and using the triangle inequality implies \(\vert \rho \vert m \leq \sum _{j=1}^{n}p_{i_{0}j}\vert x_{j}\vert \leq \big (\sum _{j=1}^{n}p_{i_{0}j}\big)m = 1 \cdot m\), whence | ρ | ≤ 1. Markov sought variations on this line of reasoning that would prove | ρ |  < 1 for all roots ρ ≠ 1 for P satisfying certain conditions [278, §6.3].

  24. 24.

    See [278, p. 694], where these conditions are denoted by (ID) and (IID) and Markov’s actual words are quoted.

  25. 25.

    For proofs that the two determinant-based conditions (suitably interpreted) imply Properties 17.26 and 17.27 below (and denoted respectively by (I*) and (II*) in [278]), see [278, pp. 695–697].

  26. 26.

    Potron spoke of “partially reduced” matrices [487, p. 1130], by which he meant the equivalent of reducible matrices.

  27. 27.

    The directed graph G(P) contains the 4-cycle 1 → 3 → 2 → 4 → 1 and so is connected.

  28. 28.

    On the founding of the institute, see [22, pp. 148–153].

  29. 29.

    Complete reducibility for A ≥ 0 means that A is permutationally similar to a block diagonal matrix in which the diagonal blocks are irreducible. Cf. Theorem 17.24 above.

  30. 30.

    Write \(A = {S}^{-1}JS\), where J is the Jordan canonical form of A. The above-described properties of the characteristic roots of A imply that \(\lim _{n\rightarrow \infty }{J}^{n} = J_{\infty } = \mathrm{Diag.\,Matrix}(1, 0,\ldots, 0)\). Thus \(\lim _{n\rightarrow \infty }{A}^{n}v_{0} = {S}^{-1}J_{\infty }Sv_{0}\) exists. Of course, in von Mises’ theorem, A is assumed to be symmetric, so that J is diagonal and J  = Diag. Matrix(1, 0, , 0) is easier to see.

  31. 31.

    For the statement of this hypothesis, see [574, pp. 521–522]. Von Mises joined the ranks of those who criticized invoking it in conjunction with Boltzmann’s theory and devoted many pages to critiquing it [574, pp. 526–532].

  32. 32.

    See, e.g., the paper by Hadamard and Fréchet [258, p. 2083], where von Mises’ work is called to the reader’s attention and praised. Hadamard and Fréchet also state (on p. 2083) that von Mises (among others mentioned) did his work without knowledge of Markov’s paper [431]. Although the basis for this statement is uncertain, it seems to be based on their belief that Markov’s work was available only in Russian, whereas, as noted earlier, a German translation had been available since 1912 in the German edition of Markov’s book [432].

  33. 33.

    For further information on Romanovsky, see [164].

  34. 34.

    Judging by his remark [502, p. 267], Romanovsky was the first to use the term “stochastic matrix.” For him it meant (i) P ≥ 0 (ii) with row sums equaling 1 and (iii) no zero column. Nowadays, condition (iii) is not usually included in the definition of a stochastic matrix, and I have not included this condition in my references to stochastic matrices.

  35. 35.

    In the 16 January 1933 session of the Académie, Émile Ostenc gave simple counterexamples to IV–VI [460]. He made no reference to Frobenius’ 1912 paper [231].

  36. 36.

    The most interesting and historically significant part of Romanovsky’s paper is the concluding paragraphs, where he responded to Kaucký’s criticism by attempting to characterize those P which admit all primitive kth roots of unity, k ≥ 3, as characteristic roots. These paragraphs are of interest because they involved what turns out to be an alternative characterization of the degree of imprimitivity k of an irreducible matrix, a characterization that has a graph-theoretic interpretation (A is cyclic of index k). Romanovsky himself made no reference to the theory of graphs, and it is doubtful he was thinking in such terms, since his ideas were motivated by the well-known determinant-theoretic formula for the coefficients of the characteristic polynomial \(\varphi (r) = \vert rI - A\vert \), as is evident from his subsequent, more detailed papers [503, p. 215] and [504, p. 163].

  37. 37.

    In 1937, Gantmacher and Krein [241] had already used Perron’s Lemma 17.6 as proved by Frobenius in 1908 to develop their theory of strictly positive (respectively nonnegative) matrices—n ×n matrices such that all k ×k minors are positive (respectively, nonnegative) for all k = 1, , n. Such matrices arise in the mechanical analysis of small oscillations. See [242] for a comprehensive account.

References

  1. G. Abraham-Frois and E. Lendjel, editors. Les Oeuvres Économiques de l’Abbé Potron. L’Harmattan, Paris, 2004.

    Google Scholar 

  2. R. Baltzer. Theorie und Anwendungen der Determinanten. S. Hirzel, Leipzig, 3rd edition, 1870.

    MATH  Google Scholar 

  3. C. Bidard, G. Erreygers, and W. Parys. Review of [1]. European J. of the History of Economic Thought, 13:163–167, 2006.

    Article  Google Scholar 

  4. C. Bidard, G. Erreygers, and W. Parys. Our daily bread: Maurice Potron, from Catholicism to mathematical economics. European J. of the History of Economic Thought, 16(1):123–154, 2009.

    Article  Google Scholar 

  5. K.-R. Biermann. Die Mathematik und ihre Dozenten an der Berliner Universität 1810–1920. Akademie-Verlag, Berlin, 1973.

    MATH  Google Scholar 

  6. C. Brezinski. History of Continued Fractions and Padé Approximants. Springer-Verlag, Berlin, 1991.

    Book  MATH  Google Scholar 

  7. L. Collatz. Einschliessungssatz für die charakteristischen Zahlen von Matrizen. Mathematische Zeitschrift, 48:221–226, 1942.

    Article  MathSciNet  Google Scholar 

  8. Sh. K. Formanov and R. Mukhamedkhanova. On the origin and development of research in probability theory and mathematical statistics in Uzbekistan up to the middle of the twentieth century (in Russian). Uzbek. Mat. Zh., 4:64–71, 2004.

    Google Scholar 

  9. E. Frank. Oskar Perron (1880–1975). Journal of Number Theory, 14:281–291, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Frobenius. Über lineare Substitutionen und bilineare Formen. Jl. für die reine u. angew. Math., 84:1–63, 1878. Reprinted in Abhandlungen 1, 343–405.

    Google Scholar 

  11. G. Frobenius. Über Matrizen aus positiven Elementen. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 471–476, 1908. Reprinted in Abhandlungen 3, 404–409.

    Google Scholar 

  12. G. Frobenius. Über Matrizen aus positiven Elementen II. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 514–518, 1909. Reprinted in Abhandlungen 3, 410–414.

    Google Scholar 

  13. G. Frobenius. Über Matrizen aus nicht negativen Elementen. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 456–477, 1912. Reprinted in Abhandlungen 3, 546–567.

    Google Scholar 

  14. F. Gantmacher. Matrix Theory. AMS Chelsea Publishing, 2000. This work, published in two volumes, is an English translation of Gantmacher’s Teoriya Matrits (Moscow, 1953). It first appeared in 1959.

    Google Scholar 

  15. F. Gantmacher and M. Krein. Sur les matrices complètement non négative et oscillatoires. Compositio mathematica, 4:445–476, 1937.

    MathSciNet  Google Scholar 

  16. F. Gantmacher and M. Krein. Ozillationsmatrizen, Ozillationskerne und kleine Schwingungen mechanischer Systeme. Akademie-Verlag, Berlin, 1960. Originally published in Russian (first edn. 1941). German version of the second edition edited by Alfred Stöhr.

    Google Scholar 

  17. J. Hadamard and M. Fréchet. Sur les probabilités discontinues des événements en châine. Zeitschrift für angwandte Mathematik und Mechanik, 13:92–97, 1933. Reprinted in J. Hadamard Oeuvres 4, 2083–2088.

    Google Scholar 

  18. T. Hawkins. Continued fractions and the origins of the Perron–Frobenius theorem. Archive for History of Exact Sciences, 62, 2008.

    Google Scholar 

  19. C. G. J. Jacobi. Allgemeine Theorie der kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird. Jl. für die reine u. angew. Math., 69:29–64, 1868. Published posthumously by E. Heine. Reprinted in Werke 6, 385–426.

    Google Scholar 

  20. J. Kaucký. Remarques à la note de M. V. Romanovsky. Comptes Rendus, Acad. Sci. Paris, 191:919–921, 1930.

    Google Scholar 

  21. A. A. Markov. Rasprostranenie predel’nykh teorem ischisleniya veroyatnostei na summu velichin svyazannykh v tsep’. Zap. (Mem.) Imp. Akad Nauk St. Peterb. Fiz.–Mat. Ser. 8, No. 3, 1908. German translation by H. Liebmann on pp. 272–298 of [432]. English translation by G. Petelin on pp. 552–575 of [298].

    Google Scholar 

  22. A. A. Markov. Warscheinlichkeitsrechnung. B. G. Teubner, Leipzig, 1912.

    Google Scholar 

  23. E. Ostenc. Sur les zéros des matrices stochastiques. Comptes Rendus, Acad. Sci. Paris, 196:150–151, 1933.

    Google Scholar 

  24. O. Perron. Note über die Konvergenz von Kettenbrüchen mit positiven Gliedern. Sitzungsberichte der mathematisch–physikalischen Klasse der K. B. Akademie der Wissenschaften zu München 1905, 35:315–322, 1906.

    Google Scholar 

  25. O. Perron. Über die Konvergenz periodischer Kettenbrüche. Sitzungsberichte der mathematisch–physikalischen Klasse der k. b. Akademie der Wissenschaften zu München 1905, 35:495–503, 1906.

    Google Scholar 

  26. O. Perron. Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann., 64:1–76, 1907.

    Article  MathSciNet  Google Scholar 

  27. O. Perron. Zur Theorie der Matrices. Math. Ann., 64:248–263, 1907.

    Article  MathSciNet  MATH  Google Scholar 

  28. O. Perron. Über die Konvergenz der Jacobi-Kettenalgorithmen mit komplexen Elementen. Sitzungsberichte der mathematisch–physikalischen Klasse der K. B. Akademie der Wissenschaften zu München 1908, pages 401–481, 1908. Submitted at the 7 December 1907 session.

    Google Scholar 

  29. O. Perron. Alfred Pringsheim. Jahresbericht der Deutschen Mathematiker-Vereinigung, 56: 1–6, 1953.

    MathSciNet  Google Scholar 

  30. M. Potron. Quelques propriétés des substitutiones linéaires à coefficients ≥ 0 et leur application aux problèmes de la production et des salaires. Comptes Rendus, Acad. Sci. Paris, 153:1129–1132, 1911.

    Google Scholar 

  31. M. Potron. Application aux problèmes de la “production suffisante” et du “salaire vitale” de quelques propriétés des substitutions linéaires à coefficientes ≥ 0. Comptes Rendus, Acad. Sci. Paris, 153:1458–1459, 1911.

    Google Scholar 

  32. M. Potron. Quleques propriétés des substitutiones linéaires à coefficients ≥ 0 et leur application aux problèmes de la production et des salaires. Annales scientifiques École Normale Sup. Paris, (3) 30:53–76, 1913.

    Google Scholar 

  33. A. Pringsheim. Ueber die Convergenz periodischer Kettenbrüche. Sitzungsberichte der mathematisch–physikalischen Klasse der K. B. Akademie der Wissenschaften zu München 1900, pages 463–488, 1901.

    Google Scholar 

  34. V. Romanovsky. Sur les chaînes de Markoff. Doklady Akademii nauk SSSR A, pages 203–208, 1929.

    Google Scholar 

  35. V. Romanovsky. Sur les chaînes discrètes de Markoff. Comptes Rendus, Acad. Sci. Paris, 191:450–452, 1930.

    Google Scholar 

  36. V. Romanovsky. Sur les chaînes biconnexes continues de Markoff. Comptes Rendus, Acad. Sci. Paris, 191:695–697, 1930.

    Google Scholar 

  37. V. Romanovsky. Sur les zéros de matrices stocastiques. Comptes Rendus, Acad. Sci. Paris, pages 266–269, 1931.

    Google Scholar 

  38. V. Romanovsky. Un théorème sur les zéros des matrices non négatives. Bulletin de la Société mathématique de France, 61:213–219, 1933.

    MathSciNet  Google Scholar 

  39. V. Romanovsky. Recherches sur les chaînes de Markoff. Acta mathematica, 66:147–251, 1936.

    Article  MathSciNet  Google Scholar 

  40. V. Romanovsky. Discrete Markov Chains. Wolters–Nordhoff, Groningen, 1970. Translated form the Russian edition (1945) by E. Seneta.

    Google Scholar 

  41. H. Schneider. The concept of irreducibility and full decomposibility of a matrix in the works of Frobenius, König and Markov. Journal of Linear Algebra and Its Applications, 1977.

    Google Scholar 

  42. H. Schneider. The influence of the marked reduced graph of a nonnegative matrix on the Jordan form and on related properties: A survey. Journal of Linear Algebra and Its Applications, 84:161–189, 1986.

    Article  MATH  Google Scholar 

  43. O. Schreier and E. Sperner. Vorlesungen über Matrizen. B. G. Teubner, Leipzig, 1932.

    Google Scholar 

  44. O. Stolz. Vorlesungen über allgemeine Arithmetik, nach den neueren Ansichten. Zweiter Theil: Arithmetik der complexen Zahlen mit geometrischen Anwendungen. Teubner, Leipzig, 1886.

    Google Scholar 

  45. H. W. Turnbull and A. C. Aitken. An Introduction to the Theory of Canonical Matrices. Blackie and Son, London & Glasgow, 1932.

    Google Scholar 

  46. R. Varga. Matrix Iterative Analysis. Prentice–Hall, Englewood Cliffs, N. J., 1962.

    Google Scholar 

  47. R. von Mises. Über die Aufgaben und Ziele der angewandten Mathematik. Zeitschrift für angewandte Mathematik und Mechanik, 1:1–15, 1921.

    Article  MATH  Google Scholar 

  48. R. von Mises. Vorlesungen aus dem Gebiete der angewandten Mathematik. Band I: Warscheinlichkeitsrechnung und ihrer Anwendung in der Statistik und theoretischen Physik. F. Deuticke, Leipzig, 1931.

    Google Scholar 

  49. J. H. M. Wedderburn. Lectures on Matrices. American Mathematical Society, New York, 1934.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hawkins, T. (2013). Nonnegative Matrices. In: The Mathematics of Frobenius in Context. Sources and Studies in the History of Mathematics and Physical Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6333-7_17

Download citation

Publish with us

Policies and ethics