Sensor Control for Random Set BasedParticle Filters



The POMDP framework for sensor control has been introduced in Sect. 2.2. This framework is now applied for the purpose of sensor control when using random finite set stochastic filters and their sequential Monte Carlo implementations.


Particle Filter Fisher Information False Detection Reward Function Sensor Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Mahler, “Multitarget sensor management of dispersed mobile sensors”, in Theory and algorithms for cooperative systems (D. Grundel, R. Murphey, and P. Pardalos, eds.), ch. 12, pp. 239–310, World Scientific books, 2004.Google Scholar
  2. 2.
    A. Farina, “Target tracking with bearings only measurements”, Signal Processing, vol. 78, pp. 61–78, 1999.Google Scholar
  3. 3.
    B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman filter: Particle filters for tracking applications. Artech House, 2004.Google Scholar
  4. 4.
    S. Arulampalam, B. Ristic, N. Gordon, and T. Mansell, “Bearings-only tracking of manoeuvring targets using particle filters”, EURASIP Journal of Applied Signal Processing, vol. 15, pp. 2351–2365, 2004.CrossRefGoogle Scholar
  5. 5.
    S. C. Nardone and V. J. Aidala, “Obsrvability criteria for bearings-only target motion analysis”, IEEE Trans. Aerospace and Electronic Systems, vol. 17, no. 2, pp. 162–166, 1981.MathSciNetCrossRefGoogle Scholar
  6. 6.
    E. Fogel and M. Gavish, “Nth-order dynamics target observability from angle measurements”, IEEE Trans. Aerospace and Electronic Systems, vol. AES-24, pp. 305–308, May 1988.Google Scholar
  7. 7.
    T. L. Song, “Observability of target tracking with bearings-only measurements”, IEEE Trans Aerospace & Electronic Systems, vol. 32, no. 4, pp. 1468–1472, 1996.CrossRefGoogle Scholar
  8. 8.
    J. M. Passerieux and D. V. Cappel, “Optimal obsever maneuver for bearings-only tracking”, IEEE Trans. Aerosp. Electr. Syst., vol. 34, no. 3, pp. 777–788, 1998.CrossRefGoogle Scholar
  9. 9.
    J.-P. L. Cadre and S. Laurent-Michel, “Optimizing the receiver maneuvers for bearings-only tracking”, Automatica, vol. 35, no. 4, pp. 591–606, 1999.CrossRefMATHGoogle Scholar
  10. 10.
    Y. Oshman and P. Davidson, “Optimization of observer trajectories for bearings only target localization”, IEEE Trans Aerospace and Electronic Systems, vol. 35, no. 3, pp. 892–902, 1999.CrossRefGoogle Scholar
  11. 11.
    Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation. John Wiley & Sons, 2001.Google Scholar
  12. 12.
    B. Ristic and S. Arulampalam,“Bernoulli particle filter with observer control for bearings only tracking in clutter”, IEEE Trans Aeropace and Electronic Systems, vol. 48, July 2012.Google Scholar
  13. 13.
    M. Hernandez, B. Ristic, A. Farina, and L. Timmoneri, “Comparison of two Cramér-Rao bounds for non-linear filtering with P\(_d<1\)”, IEEE Trans. Signal Processing, vol. 52, no. 9, pp. 2361–2370, 2004.MathSciNetCrossRefGoogle Scholar
  14. 14.
    C. Jauffret and Y. Bar-Shalom, “Track formation with bearings and frequency measurements in clutter”, IEEE Trans. Aerospace and Electronic Systems, vol. 26, no. 6, pp. 999–1010, 1990.CrossRefGoogle Scholar
  15. 15.
    A. M. Peterson, “Radio and radar tracking of the Russian Earth satellite”, Proc. of the IRE, vol. 45, no. 11, pp. 1553–1554, 1957.Google Scholar
  16. 16.
    S. N. Salinger and J. J. Brandstatter, “Application of recursive estimation and Kalman filtering to Doppler tracking”, IEEE Trans. Aerospace and Electronic Systems, vol. 4, no. 4, pp. 585–592, 1970.CrossRefGoogle Scholar
  17. 17.
    Y.-T. Chan and F. Jardine, “Target localization and tracking from Doppler-shift measurements”, IEEE Journal of Oceanic Engineering, vol. 15, no. 3, pp. 251–257, 1990.CrossRefGoogle Scholar
  18. 18.
    D. C. Torney, “Localization and observability of aircraft viaDoppler-shifts”, IEEE Trans. Aerospace and Electronic Systems, vol. 43, no. 3, pp. 1163–1168, 2007.CrossRefGoogle Scholar
  19. 19.
    Y.-C. Xiao, P. Wei, and T. Yuan, “Observability and performance analysis of bi/multi-static Doppler-only radar”, IEEE Trans. Aerospace and Electronic Systems, vol. 46, no. 4, pp. 1654–1667, 2010.CrossRefGoogle Scholar
  20. 20.
    I. Shames, A. N. Bishop, M. Smith, and B. D. O. Anderson, “Analysis of target velocity and position estimation via Doppler-shift measurements”, inProc. Australian Control Conference, (Melbourne, Australia), pp. 507–512, Nov. 2011.Google Scholar
  21. 21.
    W. Dargie and C. Poellabauer, Fundamentals of Wireless Sensor Networks: Theory and Practice. Wiley, 2010.Google Scholar
  22. 22.
    M. B. Guldogan, D. Lindgren, F. Gustafsson, H. Habberstad, and U. Orguner, “Multiple target tracking with gaussian mixture phd filter using passive acoustic doppler-only measurements”, in Proc. Int. Conf. Information Fusion, (Singapore), July 2012.Google Scholar
  23. 23.
    R. J. Webster, “An exact trajectory solution from Doppler shift measurements”, IEEE Trans. Aerospace and Electronic Systems, vol. 18, no. 2, pp. 249–252, 1982.MathSciNetCrossRefGoogle Scholar
  24. 24.
    A. O. Hero, B. Ma, O. Michel, and J. Gorman, “Alpha-divergence for classification, indexing and retrieval”, Tech. Rep. CSPL-328, Comm. and Sig. Proc. Lab., Dept. EECS, The University of Michigan, 2002.Google Scholar
  25. 25.
    T. Kailath, “The divergnce and Bhattacharyya distance measures in signal selection”, IEEE Trans. Communication technology, vol. 15, pp. 52–60, Feb. 1967.CrossRefGoogle Scholar
  26. 26.
    C. P. Robert and G. Casella, Monte Carlo statistical methods. Springer, 2nd ed., 2004.Google Scholar
  27. 27.
    R. P. S. Mahler, “PHD filters of higher order in target number”, IEEE Trans. Aerospace & Electronic Systems, vol. 43, no. 4, pp. 1523–1543, 2007.CrossRefGoogle Scholar
  28. 28.
    R. P. S. Mahler, “Multi-target Bayes filtering via first-order multi-target moments”, IEEE Trans. Aerospace & Electronic Systems vol. 39, no. 4, pp. 1152–1178, 2003.CrossRefGoogle Scholar
  29. 29.
    B. Ristic, B. -N. Vo, and D. Clark, “A Note on the Reward Function for PHD Filters with Sensor Control”, IEEE Trans. Aerospace & Electronic Systems, vol. 47, no. 2, pp. 1521–1529, 2011.CrossRefGoogle Scholar
  30. 30.
    R. Mahler, “The multisensor PHD filter II: Errorneous solution via “Poisson magic””, in, Proc. SPIE, vol. 7336, 2009.Google Scholar
  31. 31.
    B. Ristic and B. N. Vo, “Sensor control for multi-object state-space estimation using random finite sets”, Automatica, vol. 46, pp. 1812–1818, 2010.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.DSTOPort MelbourneAustralia

Personalised recommendations