Physical Causes of APSD Changes in Aerosols from OIPs and Their Impact on CI Measurements

  • Helen Strickland
  • Beth Morgan
  • Jolyon P. Mitchell


The successful implementation of AIM and/or EDA principles to the in vitro assessment of inhalable aerosols emitted from OIPs requires the user of such methods to have a basic understanding of how these particles and/or droplets interact with the human respiratory tract (HRT) upon inhalation. Such processes are inextricably governed by the underlying physical processes associated with these semi-stable systems, and all of the changes influencing particle size affect the entire APSD. This chapter looks at both aspects in some detail, in particular paying attention to how small changes in APSD might be detected by full-resolution CI systems. The information presented herein is a prelude to Chap. 9, in which case studies are presented to demonstrate the sensitivity of EDA metrics to such changes.


Electrostatic Charge Cascade Impaction Liquid Stream Human Respiratory Tract Gravitational Sedimentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hickey AJ (2007) Inhalation aerosols: physical and biological basis for therapy, 2nd edn. Informa Healthcare, NYGoogle Scholar
  2. 2.
    Finlay WH (2001) The mechanics of inhaled pharmaceutical aerosols. Academic, NYGoogle Scholar
  3. 3.
    Bechtold-Peters K, Lüssen H (2007) Pulmonary drug delivery: basics, applications and opportunities for small molecules and biopharmaceutics. Editio Cantor Verlag, Aulendorf, GermanyGoogle Scholar
  4. 4.
    Smyth HDC, Hickey AJ (2011) Controlled pulmonary delivery. Springer, NYCrossRefGoogle Scholar
  5. 5.
    Morén F, Dolovich MB, Newhouse MT, Newman SP (1993) Aerosols in medicine: principles, diagnosis and therapy. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Byron PR (2004) Drug delivery devices: issues in drug development. Proc Am Thorac Soc 1(4):321–328PubMedCrossRefGoogle Scholar
  7. 7.
    Dolovich MB, Ahrens RC, Hess DR, Anderson P, Dhand R, Rau JL, Smaldone GC, Guyatt G (2005) Device selection and outcomes of aerosol therapy. Chest 127(1):335–371PubMedCrossRefGoogle Scholar
  8. 8.
    Leung K, Louca E, Coates AL (2004) Comparison of breath-enhanced to breath-actuated nebulizers for rate, consistency, and efficiency. Chest 126(5):1619–1627PubMedCrossRefGoogle Scholar
  9. 9.
    Dolovich M, MacIntyre NR, Anderson PJ, Camargo CA, Chew N, Cole CH, Dhand R, Fink JB, Gross NJ, Hess DR, Hickey AJ, Kim CS, Martonen TB, Pierson DJ, Rubin BK, Smaldone GC (2000) Consensus statement: aerosols and delivery devices. Respir Care 45(6):589–596PubMedGoogle Scholar
  10. 10.
    Dolovich MB (2004) In my opinion – interview with the expert. Pediatr Asthma Allergy Immunol 17(4):292–300CrossRefGoogle Scholar
  11. 11.
    International Commission on Radiological Protection (ICRP) (1994) Human respiratory tract model for radiological protection. Ann ICRP 24(1–3):36–52Google Scholar
  12. 12.
    Stocks J, Hislop AA (2002) Structure and function of the respiratory system. In: Bisgaard H, O’Callaghan C, Smaldone GC (eds) Drug delivery to the lung. Marcel Dekker, NY, pp 47–104Google Scholar
  13. 13.
    Heyder J, Gebhart J, Rudolf G, Schiller CF, Stahlhofen W (1986) Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J Aerosol Sci 17(5):811–825CrossRefGoogle Scholar
  14. 14.
    Heyder J (2004) Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc 1(4):315–320PubMedCrossRefGoogle Scholar
  15. 15.
    Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839PubMedCrossRefGoogle Scholar
  16. 16.
    Newman SP, Chan H-K (2008) In vitro/in vivo comparisons in pulmonary drug delivery. J Aerosol Med Pulm Drug Deliv 21(1):1–8CrossRefGoogle Scholar
  17. 17.
    Patton JS, Fishburn S, Weers JG (2004) The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc 1(4):338–344PubMedCrossRefGoogle Scholar
  18. 18.
    Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd edn. John Wiley & Sons, NYGoogle Scholar
  19. 19.
    Islam N, Gladki E (2008) Dry powder inhalers (DPIs)—a review of device reliability and innovation. Int J Pharm 360(1–2):1–11PubMedCrossRefGoogle Scholar
  20. 20.
    Hickey AJ, Concessio NM, VanOort MM, Platz RM (1994) Factors influencing the dispersion of dry powders as aerosols. J Pharm Technol 18:58–64Google Scholar
  21. 21.
    Hickey AJ, Crowder (2007) Next generation dry powder delivery systems. In: Hickey AJ (ed) Inhalation aerosols, 2nd edn. Informa HealthCare USA, NY, pp 445–460Google Scholar
  22. 22.
    Ashurst I, Malton A (2002) Passive dry powder inhalation technology. In: Rathbone MJ, Hadgraft J, Roberts MS (eds) Modified-release drug delivery technology. Informa HealthCare, NY, pp 867–877CrossRefGoogle Scholar
  23. 23.
    Staniforth JN (1996) Pre-formulation aspects of dry powder aerosol. In: Dalby RN, Byron PR, Farr SJ (eds) Respiratory drug delivery. Interpharm, Buffalo Grove, IL, pp 65–73Google Scholar
  24. 24.
    Borgström L, Borgström L (1994) Deposition patterns with Turbuhaler®. J Aerosol Med 7S1:S49–S53Google Scholar
  25. 25.
    Duddu SP, Sisk SA, Walter YH, Tarara TE, Trimble KR, Clark AR, Eldon MA, Elton RC, Pickford M, Hirst PH, Newman SP, Weers JG (2002) Improved lung delivery from a passive dry powder inhaler using an engineered Pulmosphere® powder. Pharm Res 19(5):689–695PubMedCrossRefGoogle Scholar
  26. 26.
    Olsson B (1995) Aerosol particle generation from dry powder inhalers: can they equal pressurized metered dose inhalers? J Aerosol Med 8S3:S13–S19Google Scholar
  27. 27.
    United States Pharmacopeial Convention (2012) USP 35-NF 30 Chapter 601: aerosols, nasal sprays, metered-dose inhalers and dry powder inhalers. United States Pharmacopeial Convention, Rockville, MDGoogle Scholar
  28. 28.
    European Directorate for the Quality of Medicines and Healthcare (EDQM) (2012) Preparations for inhalation: aerodynamic assessment of fine particles. Section 2.9.18 – European Pharmacopoeia [Apparatus B in versions up to 4th Edn. 2002], Council of Europe, Strasbourg, FranceGoogle Scholar
  29. 29.
    European Agency for the Evaluation of Medicinal Products (EMA) (1998) Note for Guidance on dry powder inhalers, CPMP/QWP/158/96, London, UKGoogle Scholar
  30. 30.
    Hoe S, Traini D, Chan H-K, Young PM (2009) Measuring charge and mass distributions in dry powder inhalers using the electrical next generation impactor (eNGI). Eur J Pharm Sci 38(2):88–94PubMedCrossRefGoogle Scholar
  31. 31.
    Purewal TS (1998) Formulations of metered dose inhalers. In: Purewal TS, Grant DG (eds) Metered dose inhaler technology. CRC, Boca Raton, FL, pp 9–68Google Scholar
  32. 32.
    Smyth HDC, Evans RM, Hickey AJ (2007) Aerosol generation from propellant-driven metered dose inhalers. In: Hickey AJ (ed) Inhalation aerosols, 2nd edn. Informa HealthCare USA, NY, pp 399–416Google Scholar
  33. 33.
    Taylor G, Tran CH, Warren S, Thomas I, Marchetti G (2008) The Kemp HFA MDI valve for the delivery of novel budesonide/formoterol fumarate combination formulations. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM (eds) Respiratory drug delivery–2008. Davis HealthCare Int. Publishing, River Grove, IL, pp 983–986Google Scholar
  34. 34.
    Stein SW (2008) Aiming for a moving target: challenges with impactor measurements of MDI aerosols. Int J Pharm 355(1–2):53–61PubMedCrossRefGoogle Scholar
  35. 35.
    Lange CF, Finlay WH (2000) Overcoming the adverse effect of humidity in aerosol delivery via pressurized metered dose inhalers during mechanical ventilation. Am J Respir Crit Care Med 161(5):1614–1618PubMedCrossRefGoogle Scholar
  36. 36.
    Peart J, Kulphaisal P, Orban JC (2003) Relevance of electrostatics in respiratory drug delivery. Business Briefing: Pharmagenerics, 84–87Google Scholar
  37. 37.
    Mitchell JP, Coppolo DP, Nagel MW (2007) Electrostatics and inhaled medications: influence on delivery via pressurized metered-dose inhalers and add-on devices. Respir Care 52(3):283–300PubMedGoogle Scholar
  38. 38.
    Bonam M, Christopher D, Cipolla D, Donovan B, Goodwin D, Holmes S, Lyapustina S, Mitchell J, Nichols S, Petterson G, Quale C, Rao N, Singh D, Tougas T, Van Oort M, Walther B, Wyka B (2008) Minimizing variability of cascade impaction measurements in inhalers and nebulizers. AAPS PharmSciTech 9(2):404–413PubMedCrossRefGoogle Scholar
  39. 39.
    Rau JL, Ari A, Restrepo RD (2004) Performance comparison of nebulizer designs: constant-­output, breath-enhanced, and dosimetric. Respir Care 49(2):174–197PubMedGoogle Scholar
  40. 40.
    Knoch M, Keller M (2005) Ultrasonics, mechanical pressure through ultrafine orifices (SMIs) or by applying mechanical vibration. Expert Opin Drug Deliv 2(2):377–390PubMedCrossRefGoogle Scholar
  41. 41.
    Denyer J, Nikander K, Smith NJ (2004) Adaptive aerosol delivery (AAD) technology. Expert Opin Drug Deliv 1(1):165–176PubMedCrossRefGoogle Scholar
  42. 42.
    Kesser KC, Geller DE (2009) New aerosol delivery devices for cystic fibrosis. Respir Care 54(6):754–768PubMedCrossRefGoogle Scholar
  43. 43.
    Lefebvre AH (1989) Atomization and sprays. Hemisphere, New YorkGoogle Scholar
  44. 44.
    Nerbrink O, Dahlbäck M, Hansson HC (1994) Why do medical nebulizers differ in their output and particle characteristics? J Aerosol Med 7:259–276PubMedCrossRefGoogle Scholar
  45. 45.
    Niven RW, Hickey AJ, Niven RW, Hickey AJ (2007) Atomization and nebulizers. In: Hickey AJ (ed) Inhalation aerosols, 2nd edn. Informa HealthCare USA, NY, pp 253–283Google Scholar
  46. 46.
    Berg E, Picard RJ (2009) In vitro delivery of budesonide from 30 jet nebulizer/compressor combinations using infant and child breathing patterns. Respir Care 54(12):1671–1678PubMedGoogle Scholar
  47. 47.
    Dennis JH (2007) Nebulizer efficiency: modeling versus in vitro testing. Respir Care 52(8):984–988PubMedGoogle Scholar
  48. 48.
    Finlay WH, Stapleton KW (1999) Undersizing of droplets from a vented nebulizer caused by aerosol heating during transit through an Andersen impactor. J Aerosol Sci 30(1):105–109CrossRefGoogle Scholar
  49. 49.
    European Directorate for the Quality of Medicines and Healthcare (EDQM) (2012) Preparations for nebulisation. Section 2.9.44 – European PharmacopoeiaGoogle Scholar
  50. 50.
    Dennis J, Berg E, Sandell D, Ali A, Lamb P, Tservistas M, Karlsson M, Mitchell J (2008) Cooling the NGI – an approach to size a nebulised aerosol more accurately. PharmEur Sci Notes 1:27–30Google Scholar
  51. 51.
    Hinds WC (1993) Physical and chemical changes in the particulate phase. In: Willeke K, Baran PA (eds) Aerosol measurement: principles, techniques and applications. Van Nostrand Reinhold, NY, pp 41–53Google Scholar
  52. 52.
    Lee KW, Chen H (1984) Coagulation rate of polydisperse particles. Aerosol Sci Technol 3(3):327–334CrossRefGoogle Scholar
  53. 53.
    Finlay WH (2001) The mechanics of inhaled pharmaceutical aerosols: an introduction. Academic, London, UKGoogle Scholar
  54. 54.
    Di Benedetto G, Clarke SW (1992) Inhalation therapy in asthma. J R Soc Med 85:3–5PubMedGoogle Scholar
  55. 55.
    Zhou Y, Sun J, Cheng Y-S (2011) Comparison of deposition in the USP and physical mouth-­throat models with solid and liquid particles. J Aerosol Med Pulm Drug Deliv 24(6):277–284PubMedCrossRefGoogle Scholar
  56. 56.
    Rader DJ, Marple VA (1985) Effect of ultra-Stokesian drag and particle interception on impactor characteristics. Aerosol Sci Technol 4(2):141–156CrossRefGoogle Scholar
  57. 57.
    Cheng Y-S, Yazzie D, Zhou Y (2001) Respiratory deposition patterns of salbutamol MDI with CFC and HFA-134a formulations in a human airway replica. J Aerosol Med 14(2):255–266PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang Y, Finlay WH (2005) Experimental measurements of particle deposition in three proximal lung bifurcation models with an idealized mouth-throat. J Aerosol Med 18(4):460–473PubMedCrossRefGoogle Scholar
  59. 59.
    Martonen TB, Lowe J (1983) Assessment of aerosol deposition patterns in human respiratory tract casts. In: Marple VA, Liu BYH (eds) Aerosols in the mining and industrial work environments, vol 1, Fundamentals and Status. Ann Arbor Science, Ann Arbor, MI, pp 151–164Google Scholar
  60. 60.
    Mitchell JP, Poochikian G, Hickey AJ, Suggett J, Curry P, Tougas T (2011) In vitro assessment of spacers and valved holding chambers used with pressurized metered-dose inhalers: the need for a USP chapter with clinically relevant test methods. Pharm Forum 37(4).
  61. 61.
    Bisgaard H, Anhøj J, Wildhaber JH (2000) Spacer devices. In: Bisgaard H, O’Callaghan C, Smaldone GC (eds) Drug delivery to the lung. Marcel Dekker, NY, pp 389–420Google Scholar
  62. 62.
    Canadian Standards Association (CSA) (2008) Spacers and holding chambers for use with metered-dose inhalers, CAN/CSA/Z264.1-02, Mississauga, ON, Canada. Accessed 1 Sept 2011
  63. 63.
    Landahl HD (1963) Note on the removal of airborne particles by the human respiratory tract with particular reference to the role of diffusion. Bull Math Biophys 25:29–39PubMedCrossRefGoogle Scholar
  64. 64.
    Kwok PCL, Chan H-K (2007) Electrostatic charge in pharmaceutical systems. In: Swarbrink J (ed) Encyclopedia of pharmaceutical technology, 3rd edn. Informa Healthcare, NY, pp 1535–1548Google Scholar
  65. 65.
    Hendricks CD (1973) Charging macroscopic particles. In: Moore AD (ed) Electrostatics and its applications. John Wiley & Sons, NY, pp 57–85Google Scholar
  66. 66.
    O’Leary M, Balachandran W, Chambers F (2008) Nebulised aerosol electrostatic charge explored using bipolar electrical mobility profiles. In: Industry Appl. IEEE-IAS Annual Meeting, Edmonton, AB, Canada, pp. 1–5. Accessed 6 Jan2012
  67. 67.
    Beleca R, Abbod M, Balachandran W, Miller PR (2010) Investigation of electrostatic properties of pharmaceutical powders using phase Doppler anemometry. IEEE Trans Ind Appl46(3):1181–1187CrossRefGoogle Scholar
  68. 68.
    Kulon J, Balachandran W (2001) The measurement of bipolar charge on aerosols. J Electrostat 51–52:552–557CrossRefGoogle Scholar
  69. 69.
    Glover W, Chan H-K (2004) Electrostatic charge characterization of pharmaceutical aerosols using electrical low-pressure impaction (ELPI). J Aerosol Sci 35(6):755–764CrossRefGoogle Scholar
  70. 70.
    Peart J, Magyar C, Byron PR (1998) Aerosol electrostatics: metered-dose inhalers (MDIs). In: Dalby RN, Byron PR, Farr SJ (eds) Respiratory drug delivery–VI. Interpharm, Buffalo Grove, IL, pp 227–233Google Scholar
  71. 71.
    Piérart F, Wildhaber JH, Vrancken I, Devadason SG, Le Souëf PN (1999) Washing plastic spacers in household detergent reduces electrostatic charge and greatly improves delivery. Eur Respir J 13(3):673–678PubMedCrossRefGoogle Scholar
  72. 72.
    Martin AR, Finlay WH (2012) Aerosol drug delivery to the lungs. In: Gad SC (ed) Development of therapeutic agents handbook. John Wiley & Sons, NY, pp 565–588Google Scholar
  73. 73.
    Smyth H, Brace G, Barbour T, Gallion J, Grove J, Hickey AJ (2006) Spray pattern analysis for metered dose inhalers: effect of actuator design. Pharm Res 23(7):1951–1956CrossRefGoogle Scholar
  74. 74.
    Myrdal P, Stein S, Mogalian E, Hoye W, Gupta A (2004) Comparison of the TSI model 3306 impactor inlet with the Andersen cascade impactor: solution metered dose inhalers. Drug Dev Ind Pharm 30(8):859–868PubMedCrossRefGoogle Scholar
  75. 75.
    Rao N, Kadrichu N, Ament B (2010) Application of a droplet evaporation model to aerodynamic size measurement of drug aerosols generated by a vibrating mesh nebulizer. J Aerosol Med Pulm Drug Deliv 23(5):295–302PubMedCrossRefGoogle Scholar
  76. 76.
    Copley M, Smurthwaite M, Roberts DL, Mitchell JP (2005) Revised internal volumes of cascade impactors for those provided by Mitchell and Nagel. J Aerosol Med 18(3):364–366PubMedCrossRefGoogle Scholar
  77. 77.
    Primiano FP, Saidel GM, Montague FW, Kruse KL, Green CG, Horowitz JG (1988) Water vapour and temperature dynamics in the upper airways of normal and CF subjects. Eur Respir J 1(5):407–414PubMedGoogle Scholar
  78. 78.
    Telko MJ, Hickey AJ (2005) Dry powder inhaler formulation. Respir Care 50(9):1209–1227PubMedGoogle Scholar
  79. 79.
    Dunbar CA, Hickey AJ, Holzner P (1998) Dispersion and characterization of pharmaceutical dry powder aerosols. Kona Powder Part J 16:7–44Google Scholar
  80. 80.
    Hindle M, Makinen GM (1996) Effects of humidity on the in-vitro aerosol performance and aerodynamic size distribution of cromolyn sodium for inhalation. Eur J Pharm Sci 4S1:142SCrossRefGoogle Scholar
  81. 81.
    United States Pharmacopeial Convention (2012) USP 35-NF 30 Chapter 1601: products for nebulization. United States Pharmacopeial Convention, Rockville, MDGoogle Scholar
  82. 82.
    US Federal Drug Administration (2009) Guidance for industry: Q8(R2) pharmaceutical development. Silver Spring, MD. Accessed 8 May 2012
  83. 83.
    Marple VA, Roberts DL, Romay FJ, Miller NC, Truman KG, Van Oort M, Olsson B, Holroyd MJ, Mitchell JP, Hochrainer D (2003) Next generation pharmaceutical impactor. Part 1: Design. J Aerosol Med 16(3):283–299PubMedCrossRefGoogle Scholar
  84. 84.
    Mitchell JP, Nagel MW (1999) Time-of-flight aerodynamic particle size analyzers: their use and limitations for the evaluation of medical aerosols. J Aerosol Med 12(4):217–240PubMedCrossRefGoogle Scholar
  85. 85.
    Roberts DL (2009) Theory of multi-nozzle impactor stages and the interpretation of stage mensuration data. Aerosol Sci Technol 43(11):1119–1129CrossRefGoogle Scholar
  86. 86.
    Chambers F, Aziz A, Mitchell J, Shelton C, Nichols C (2010) Cascade impactor (CI) mensuration: an assessment of the accuracy and precision of commercially available optical measurement systems. AAPS PharmSciTech 11(1):472–484PubMedCrossRefGoogle Scholar
  87. 87.
    US Food and Drug Administration (FDA) (1998) CDER. Draft guidance for industry metered dose inhaler (MDI) and dry powder inhaler (DPI) drug products chemistry, manufacturing, and controls documentation, Rockville, MD. Accessed 6 Jan 2012

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Helen Strickland
    • 1
  • Beth Morgan
    • 2
  • Jolyon P. Mitchell
    • 3
  1. 1.GlaxoSmithKlineZebulonUSA
  2. 2.GlaxoSmithKline, Zebulon Manufacturing and SupplyZebulonUSA
  3. 3.Trudell Medical InternationalLondonCanada

Personalised recommendations