Skip to main content

Applications to Battery Diagnosis

  • Chapter
  • First Online:
System Identification Using Regular and Quantized Observations

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 1003 Accesses

Abstract

This chapter uses a battery diagnosis problem to illustrate the use of the LDP in industrial applications. Management of battery systems plays a pivotal role in electric and hybrid vehicles, and in support of distributed renewable energy generation and smart grids. The state of charge (SOC), the state of health (SOH), internal impedance, open circuit voltage, and other parameters indicate jointly the state of the battery system. Battery systems’ behavior varies significantly among individual cells and demonstrates time-varying and nonlinear characteristics under varying operating conditions such as temperature, charging/discharging rates, and different SOCs. Such complications in capturing battery features point to a common conclusion that battery monitoring, diagnosis, and management should be individualized and adaptive. Although battery health diagnosis has drawn substantial research effort recently [26, 56] using various estimation methods or signal-processing algorithms [6, 43], the LDP has never been used before in this application. In the following, we describe a joint estimation algorithm for real-time battery parameter and SOC estimation that supports a diagnosis method using LDPs. For further reading on power control and battery systems, see [4, 5, 9, 13, 20, 21, 24, 25, 34, 44, 52] and references therein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Aström and B. Wittenmark, Adaptive Control, Addison-Wesley, 1989.

    Google Scholar 

  2. R.R. Bahadur, Large deviation of the maximum likelihood estimate in the Markov chain case, in Recent Advances in Statistics, M.H. Rizvi, J.S. Rostag, and D. Siegmund eds., Academic Press, NY, 1983, 273–286.

    Google Scholar 

  3. R.R. Bahadur, S.L. Zabell, and J.C. Gupta, Large deviations, tests and estimates, in Asymptotic Theory of Statistical Tests, I.M. Chakravarti, ed., Academic Press, NY, 1980, 33–64.

    Google Scholar 

  4. C. Barbier, H. Meyer, B. Nogarede, S. Bensaoud, A battery state of charge indicator for electric vehicle, in Proc. International Conference of the Institution of Mechanical Engineers, Automotive Electronics, London, UK, May 17–19, 29–34, 1994.

    Google Scholar 

  5. E. Barsoukov, J. Kim, C. Yoon, H. Lee, Universal battery parameterization to yield a non-linear equivalent circuit valid for battery simulation at arbitrary load, J. Power Sour., 83 (1999), 61–70.

    Article  Google Scholar 

  6. B.S. Bhangu, P. Bentley, D.A. Stone, and C.M. Bingham, Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles, IEEE Trans. Veh. Tech., 54 (2005), 783–794.

    Article  Google Scholar 

  7. W. Bryc and A. Dembo. Large deviations and strong mixing, Ann. Inst. H. Poincare Probab. Stat., 32 (1996), 549–569.

    MathSciNet  MATH  Google Scholar 

  8. P.E. Caines, Linear Stochastic Systems, Wiley, New York, 1988.

    MATH  Google Scholar 

  9. H. Chan, D. Sutanto, A new battery model for use with battery energy storage systems and electric vehicle power systems, in Proceedings of the 2000 IEEE Power Engineering Society Winter Meeting, Singapore, 470–475, January 23–27, 2000.

    Google Scholar 

  10. H.-F. Chen and L. Guo, Identification and Stochastic Adaptive Control, Birkhäuser, Boston, 1991.

    Book  MATH  Google Scholar 

  11. K.L. Chung, On a stochastic approximation method, Ann. Math. Statist., 25 (1954), 463–483.

    Article  MATH  Google Scholar 

  12. O. Craiu, A. Machedon, et al., 3D finite element thermal analysis of a small power PM DC motor, 12th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), 2010.

    Google Scholar 

  13. H.F. Dai, X.Z. Wei, Z.C. Sun, Online SOC estimation of high-power lithium-ion batteries used on HEVs, Proceedings of IEEE ICVES 2006, 342–347.

    Google Scholar 

  14. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, 2nd ed., Springer-Verlag, New York, 1998.

    Book  MATH  Google Scholar 

  15. P. Dupuis and H.J. Kushner, Stochastic approximation via large deviations: asymptotic properties, SIAM J. Control Optim., 23 (1985) 675–696.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Dupuis and H.J. Kushner, Stochastic approximation and large deviations: upper bounds and w.p.1 convergence, SIAM J. Control Optim., 27 (1989) 1108–1135.

    Google Scholar 

  17. W. Feller, An Introduction to Probability Theory and Its Applications, vol. I, 3rd ed. Wiley, New York, 1968.

    Google Scholar 

  18. A.E. Fitzgerald, C. Kingsley Jr., and S.D. Umans, Electric Machinery, McGraw-Hill Science/Engineering/Math, 6th ed., 2002.

    Google Scholar 

  19. J. Gärtner, On large deviations from the invariant measure, Theory Probab. Appl., 22 (1977), 24–39.

    Article  MATH  Google Scholar 

  20. R. Giglioli, P. Pelacchi, M. Raugi, and G. Zini, A state of charge observer for lead-acid batteries, Energia Elettrica 65 (1988), 27–33.

    Google Scholar 

  21. W.B. Gu and C.Y. Wang, Thermal electrochemical modeling of battery systems, J. Electrochem. Soc., 147 (2000), 2910–2922.

    Article  Google Scholar 

  22. B.S. Guru and H.R. Hiziroglu, Electric Machinery and Transformers, Oxford University Press, 2001.

    Google Scholar 

  23. S. Haykin, Unsupervised Adaptive Filtering: Volume I Blind Source Separation, John Wiley Sons, Inc., USA, 2000.

    Google Scholar 

  24. V. Johnson, A. Pesaran, and T. Sack, Temperature-dependent battery models for high-power lithium-ion batteries, Proceedings of the 17th Electric Vehicle Symposium, Montreal, Canada, October 2000.

    Google Scholar 

  25. V. Johnson, M. Zolot, and A. Pesaran, Development and validation of a temperature-dependent resistance/capacitance battery model for ADVISOR, Proceedings of the 18th Electric Vehicle Symposium, Berlin, Germany, October 2001.

    Google Scholar 

  26. I.-S. Kim, A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer, IEEE Trans. Power Elec., 25 (2010), 1013–1022.

    Article  Google Scholar 

  27. A.D.M. Kester and W.C.M. Kallenberg, Large deviations of estimators, Ann. Statist., 14 (1986) 648–664.

    Article  MathSciNet  MATH  Google Scholar 

  28. P.R. Kumar and P. Varaiya, Stochastic Systems: Estimation, Identification and Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ, 1986.

    MATH  Google Scholar 

  29. H.J. Kushner, Asymptotic behavior of stochastic approximation and large deviation, IEEE Trans. Automat. Control, 29 (1984), 984–990.

    Article  MathSciNet  MATH  Google Scholar 

  30. H.J. Kushner and H. Huang, Rates of convergence for stochastic approximation type algorithms, SIAM J. Control Optim., 17 (1979) 607–617.

    Article  MathSciNet  MATH  Google Scholar 

  31. H.J. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications, 2nd ed., Springer-Verlag, New York, 2003.

    MATH  Google Scholar 

  32. Z.Y. Liu and C.R. Lu, Limit Theory for Mixing Dependent Random Variables, Science Press, Kluwer Academic, New York, Dordrecht, 1996.

    Google Scholar 

  33. L. Liu, L.Y. Wang, Z. Chen, C. Wang, F. Lin, and H. Wang, Integrated system identification and state-of-charge estimation of battery systems, IEEE Transactions on Energy Conversion, (2013), 1–12.

    Google Scholar 

  34. D. Linden and T. Reddy, Handbook of Batteries, 3rd ed., McGraw Hill, 2001.

    Google Scholar 

  35. L. Ljung, System Identification: Theory for the User, Prentice-Hall, Englewood Cliffs, NJ, 1987.

    MATH  Google Scholar 

  36. L. Ljung, H. Hjalmarsson, and H. Ohlasson, Four encounters with systems identification, Euro. J. Control, 17 (2011) 449–471.

    Article  MATH  Google Scholar 

  37. L. Ljung and T. Söderström, Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA, 1983.

    MATH  Google Scholar 

  38. M. Milanese and A. Vicino, Optimal estimation theory for dynamic systems with set membership uncertainty: an overview, Automatica, 27 (1991), 997–1009.

    Article  MathSciNet  MATH  Google Scholar 

  39. Online: http://www.mathworks.com/help/toolbox/physmod/powersys/ref/battery.html

  40. K. Ogata, Discrete-Time Control Systems, Prentice-Hall, Inc. Upper Saddle River, NJ, 1987.

    Google Scholar 

  41. B.T. Polyak, New method of stochastic approximation type, Automation Remote Control 7 (1991), 937–946.

    Google Scholar 

  42. G. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 1. Background, J. Power Sour., 134 (2004), 252–261.

    Google Scholar 

  43. M.A. Roscher, J. Assfalg, and O.S. Bohlen, Detection of utilizable capacity deterioration in battery systems, IEEE Trans. Vehicular Tech., 60 (2011), 98–103.

    Article  Google Scholar 

  44. S. Rodrigues, N. Munichandraiah, and A. Shukla, A review of state-of-charge indication of batteries by means of AC impedance measurements, J. Power Sour., 87 (2000), 12–20.

    Article  Google Scholar 

  45. D. Ruppert, Stochastic approximation, in Handbook in Sequential Analysis, B.K. Ghosh and P.K. Sen, eds., Marcel Dekker, New York, 1991, 503–529.

    Google Scholar 

  46. M. Sitterly, L.Y. Wang, G. Yin, and C. Wang, Enhanced identification of battery models for real-time battery management, IEEE Transactions on Sustainable Energy, 2 (2011), 300–308.

    Article  Google Scholar 

  47. A.M. Sharaf, E. Elbakush, and I.H. Atlas, A predictive dynamic controller for PMDC motor drives, Fifth International Conference on Industrial Automation, Montréal, Quebec, Canada, June 11–13, 2007.

    Google Scholar 

  48. T. Soderstom and P. Stoica, System Identification, Prentice-Hall, 1989.

    Google Scholar 

  49. V. Solo, Robust identification and large deviations, in Proc. 35th IEEE CDC, Kobe Japan, Dec. 1996, 4202–4203.

    Google Scholar 

  50. V. Solo, More on robust identification and large deviations, in Proc. IFAC99, Beijing, P.R. China, June, 1999, 451–455.

    Google Scholar 

  51. V. Solo and X. Kong, Adaptive Signal Processing Algorithms, Prentice-Hall, Englewood Cliffs, NJ, 1995.

    Google Scholar 

  52. K. Takano, K. Nozaki, Y. Saito, A. Negishi, K. Kato, and Y. Yamaguchi, Simulation study of electrical dynamic characteristics of lithium-ion battery, J. Power Sour., 90 (2000), 214–223.

    Article  Google Scholar 

  53. O. Tremblay and L.A. Dessaint, Experimental validation of a battery dynamic model for EV applications, World Electric Vehicle Journal, vol. 3, at 2009 AVERE, EVS24 Stavanger, Norway, May 13–16, 2009.

    Google Scholar 

  54. V.I. Utkin and H.-C. Chang, Sliding mode control on electromechanical systems, Mathmatical Problems in Engineering, 8 (2002), 451–473.

    Article  MathSciNet  MATH  Google Scholar 

  55. S.R. Venkatesh and M.A. Dahleh, Identification in the presence of classes of unmodelled dynamics and noise, IEEE Trans. Automatic Control, 42 (1997), 1620–1635.

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Widodo, M.-C. Shim, W. Caesarendra, and B.-S. Yang, Intelligent prognostics for battery health monitoring based on sample entropy, Expert Systems Appl., 38 (2011) 11763–11769.

    Article  Google Scholar 

  57. L.Y. Wang and G. Yin, Persistent identification of systems with unmodeled dynamics and exogenous disturbances, IEEE Trans. Automat. Control, 45 (2000), 1246–1256.

    Article  MathSciNet  MATH  Google Scholar 

  58. L.Y. Wang and G. Yin, Asymptotically efficient parameter estimation using quantized output observations, Automatica, 43 (2007), 1178–1191.

    Article  MathSciNet  MATH  Google Scholar 

  59. L.Y. Wang and G. Yin, Quantized identification with dependent noise and Fisher information ratio of communication channels, IEEE Trans. Automat. Control, 53 (2010), 674–690.

    Article  MathSciNet  Google Scholar 

  60. L.Y. Wang, G. Yin, and J.F. Zhang, Joint identification of plant rational models and noise distribution functions using binary-valued observations, Automatica, 42 (2006), 535–547.

    Article  MathSciNet  MATH  Google Scholar 

  61. L.Y. Wang, G. Yin, J.F. Zhang, and Y.L. Zhao, Space and time complexities and sensor threshold selection in quantized identification, Automatica, 44 (2008), 3014–3024.

    Article  MathSciNet  MATH  Google Scholar 

  62. L.Y. Wang, G. Yin, J.-F. Zhang, and Y.L. Zhao, System Identification with Quantized Observations: Theory and Applications, Birkhäuser, Boston, 2010.

    Book  Google Scholar 

  63. L.Y. Wang, J.-F. Zhang, and G. Yin, System identification using binary sensors, IEEE Trans. Automat. Control, 48 (2003), 1892–1907.

    Article  MathSciNet  Google Scholar 

  64. C.Z. Wei, Multivariate adaptive stochastic approximation, Ann. Statist. 15 (1987), 1115–1130.

    Article  MathSciNet  MATH  Google Scholar 

  65. B. Widrow, J. Glover, J. McCool, J. Kaunitz, C. Williams, R. Hearn, J. Zeidler, E. Dong and R. Goolin, Adaptive noise cancelling: principles and applications, IEEE Proc., 63 (1975), 1692–1716.

    Article  Google Scholar 

  66. G. Yin, S. Kan, L.Y. Wang, and C.Z. Xu, Identification of systems with regime switching and unmodelled dynamics, IEEE Trans. Automat. Control, 54 (2009), 34–47.

    Article  MathSciNet  Google Scholar 

  67. G. Yin, V. Krishnamurthy, and C. Ion, Regime switching stochastic approximation algorithms with application to adaptive discrete stochastic optimization, SIAM J. Optim., 14 (2004), 1187–1215.

    Article  MathSciNet  MATH  Google Scholar 

  68. G. Yin, L.Y. Wang, and S. Kan, Tracking and identification of regime-switching systems using binary sensors, Automatica, 45 (2009), 944–955.

    Article  MathSciNet  MATH  Google Scholar 

  69. G. Yin and Q. Zhang, Discrete-Time Markov Chains: Two-Time-Scale Methods and Applications, Springer, New York, 2005.

    MATH  Google Scholar 

  70. G. Yin and C. Zhu, Hybrid Switching Diffusions: Properties and Applications, Springer, New York, 2010.

    Book  MATH  Google Scholar 

  71. G. Zames, On the metric complexity of causal linear systems: ε-entropy and ε-dimension for continuous time, IEEE Trans. Automatic Control, 24 (1979), 222–230.

    Article  MathSciNet  MATH  Google Scholar 

  72. H. Zheng, H. Wang, L.Y. Wang, and G. Yin, Time-shared channel identification for adaptive noise cancellation in breath sound extraction, J. Control Theory Appl., 2 (2004), 209–221.

    Article  MATH  Google Scholar 

  73. H. Zheng, H. Wang, L.Y. Wang, and G. Yin, Cyclic system reconfiguration and time-split signal separation with applications to lung sound pattern analysis, IEEE Trans. Signal Processing, 55 (2007), 2897–2913.

    Article  MathSciNet  Google Scholar 

  74. X.Y. Zhou and G. Yin, Markowitz mean-variance portfolio selection with regime switching: a continuous-time model, SIAM J. Control Optim., 42 (2003), 1466–1482.

    Article  MathSciNet  MATH  Google Scholar 

  75. C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control Optim., 46 (2007), 1155–1179.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Qi He, Le Yi Wang, and G. George Yin

About this chapter

Cite this chapter

He, Q., Wang, L.Y., Yin, G.G. (2013). Applications to Battery Diagnosis. In: System Identification Using Regular and Quantized Observations. SpringerBriefs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6292-7_6

Download citation

Publish with us

Policies and ethics