Advertisement

Stress-Induced Mutagenesis in Bacteria

Chapter

Abstract

Under stress, high mutation rates can be advantageous because they increase the probability of generation of the adaptive mutations. Mutation rates can be modulated by changing the proportion of constitutive mutator versus non-mutator bacteria at the population level, or by inducing stress responses, which increase mutation rates transiently in individual cells. Constitutive mutator alleles are selected because they hitchhike with the adaptive mutations they generate. There are two nonexclusive hypotheses concerning the nature of selective pressure acting on the molecular mechanisms controlling stress-induced mutagenesis: stress-induced mutagenesis could be an unavoidable by-product of mechanisms involved in survival under stress, or stress-induced mutator phenotypes could be selected for in the same way as constitutive mutator alleles; that is, via hitchhiking with the adaptive mutations they generate. However, regardless of the nature of selective pressure acting on stress-induced mutagenesis, it is very likely that the resulting increased genetic variability plays an important role in the bacterial evolution.

Keywords

Mismatch Repair Deleterious Mutation Sigma Factor Adaptive Mutation Beneficial Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by FP7-HEALTH-F3-2010-241476 and ANR-09-BLAN-0251 grants.

References

  1. Battesti A, Majdalani N, Gottesman S (2011) The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 65:189–213PubMedCrossRefGoogle Scholar
  2. Bijlsma R, Loeschcke V (eds) (1997) Environmental stress, adaptation, and evolution, vol EXS 83. Birkhäuser, BaselGoogle Scholar
  3. Bjedov I, Tenaillon O, Gerard B, Souza V, Denamur E, Radman M, Taddei F, Matic I (2003) Stress-induced mutagenesis in bacteria. Science 300:1404–1409PubMedCrossRefGoogle Scholar
  4. Bjedov I, Dasgupta CN, Slade D, Le Blastier S, Selva M, Matic I (2007) Involvement of Escherichia coli DNA polymerase IV in tolerance of cytotoxic alkylating DNA lesions in vivo. Genetics 176:1431–1440PubMedCrossRefGoogle Scholar
  5. Bjorkholm B, Sjolund M, Falk PG, Berg OG, Engstrand L, Andersson DI (2001) Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc Natl Acad Sci USA 98:14607–14612PubMedCrossRefGoogle Scholar
  6. Boe L, Danielsen M, Knudsen S, Petersen JB, Maymann J, Jensen PR (2000) The frequency of mutators in populations of Escherichia coli. Mutat Res 448:47–55PubMedCrossRefGoogle Scholar
  7. Brotcorne-Lannoye A, Maenhaut-Michel G (1986) Role of RecA protein in untargeted UV mutagenesis of bacteriophage lambda: evidence for the requirement for the dinB gene. Proc Natl Acad Sci USA 83:3904–3908PubMedCrossRefGoogle Scholar
  8. Chao L, Cox EC (1983) Competition between high and low mutating strains of Escherichia coli. Evolution 37:125–134CrossRefGoogle Scholar
  9. Chao L, Vargas C, Spear BB, Cox EC (1983) Transposable elements as mutator genes in evolution. Nature 303:633–635PubMedCrossRefGoogle Scholar
  10. Cooper VS, Lenski RE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407:736–739PubMedCrossRefGoogle Scholar
  11. Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC (2001) Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158:41–64PubMedGoogle Scholar
  12. del Campo R, Morosini MI, de la Pedrosa EG, Fenoll A, Munoz-Almagro C, Maiz L, Baquero F, Canton R (2005) Population structure, antimicrobial resistance, and mutation frequencies of Streptococcus pneumoniae isolates from cystic fibrosis patients. J Clin Microbiol 43:2207–2214PubMedCrossRefGoogle Scholar
  13. Denamur E, Lecointre G, Darlu P, Tenaillon O, Acquaviva C, Sayada C, Sunjevaric I, Rothstein R, Elion J, Taddei F et al (2000) Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 103:711–721PubMedCrossRefGoogle Scholar
  14. Drake JW (1993) General antimutators are improbable. J Mol Biol 229:8–13PubMedCrossRefGoogle Scholar
  15. Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686PubMedGoogle Scholar
  16. Eisenstark A, Calcutt MJ, Becker-Hapak M, Ivanova A (1996) Role of Escherichia coli rpoS and associated genes in defense against oxidative damage. Free Radic Biol Med 21:975–993PubMedCrossRefGoogle Scholar
  17. Feng G, Tsui HC, Winkler ME (1996) Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J Bacteriol 178:2388–2396PubMedGoogle Scholar
  18. Ferenci T (2003) What is driving the acquisition of mutS and rpoS polymorphisms in Escherichia coli? Trends Microbiol 11:457–461PubMedCrossRefGoogle Scholar
  19. Fernandez De Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35:1560–1572PubMedCrossRefGoogle Scholar
  20. Foster PL (2000) Adaptive mutation in Escherichia coli. Cold Spring Harb Symp Quant Biol 65:21–29PubMedCrossRefGoogle Scholar
  21. Friedberg EC, Wagner R, Radman M (2002) Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296:1627–1630PubMedCrossRefGoogle Scholar
  22. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. ASM Press, Washington, DCGoogle Scholar
  23. Funchain P, Yeung A, Stewart JL, Lin R, Slupska MM, Miller JH (2000) The consequences of growth of a mutator strain of Escherichia coli as measured by loss of function among multiple gene targets and loss of fitness. Genetics 154:959–970PubMedGoogle Scholar
  24. Funchain P, Yeung A, Stewart J, Clendenin WM, Miller JH (2001) Amplification of mutator cells in a population as a result of horizontal transfer. J Bacteriol 183:3737–3741PubMedCrossRefGoogle Scholar
  25. Giraud A, Matic I, Tenaillon O, Clara A, Radman M, Fons M, Taddei F (2001) Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291:2606–2608PubMedCrossRefGoogle Scholar
  26. Graziewicz M, Wink DA, Laval F (1996) Nitric oxide inhibits DNA ligase activity: potential mechanisms for NO-mediated DNA damage. Carcinogenesis 17:2501–2505PubMedCrossRefGoogle Scholar
  27. Guelfo JR, Rodriguez-Rojas A, Matic I, Blazquez J (2010) A MATE-family efflux pump rescues the Escherichia coli 8-oxoguanine-repair-deficient mutator phenotype and protects against H(2)O(2) killing. PLoS Genet 6:e1000931PubMedCrossRefGoogle Scholar
  28. Harris RS, Feng G, Ross KJ, Sidhu R, Thulin C, Longerich S, Szigety SK, Winkler ME, Rosenberg SM (1997) Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev 11:2426–2437PubMedCrossRefGoogle Scholar
  29. Hengge-Aronis R (2000) The general stress response in Escherichia coli. In: Storz G, Hengge-­Aronis R (eds) Bacterial stress responses. ASM Press, Washington DC, pp 161–178Google Scholar
  30. Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395PubMedCrossRefGoogle Scholar
  31. Horst JP, Wu TH, Marinus MG (1999) Escherichia coli mutator genes. Trends Microbiol 7:29–36PubMedCrossRefGoogle Scholar
  32. Ilves H, Horak R, Kivisaar M (2001) Involvement of sigma(S) in starvation-induced transposition of Pseudomonas putida transposon Tn4652. J Bacteriol 183:5445–5448PubMedCrossRefGoogle Scholar
  33. Imhof M, Schlotterer C (2001) Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc Natl Acad Sci USA 98:1113–1117PubMedCrossRefGoogle Scholar
  34. Jishage M, Ishihama A (1998) A stationary phase protein in Escherichia coli with binding activity to the major sigma subunit of RNA polymerase. Proc Natl Acad Sci USA 95:4953–4958PubMedCrossRefGoogle Scholar
  35. Kannan P, Dharmalingam K (1990) Induction of the inhibitor of the RecBCD enzyme in Escherichia coli is a lexA-independent SOS response. Curr Microbiol 21:7–15CrossRefGoogle Scholar
  36. Kibota TT, Lynch M (1996) Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381:694–696PubMedCrossRefGoogle Scholar
  37. Kim SR, Maenhaut-Michel G, Yamada M, Yamamoto Y, Matsui K, Sofuni T, Nohmi T, Ohmori H (1997) Multiple pathways for SOS-induced mutagenesis in Escherichia coli: an overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Proc Natl Acad Sci USA 94:13792–13797PubMedCrossRefGoogle Scholar
  38. King T, Ishihama A, Kori A, Ferenci T (2004) A regulatory trade-off as a source of strain variation in the species Escherichia coli. J Bacteriol 186:5614–5620PubMedCrossRefGoogle Scholar
  39. Kishony R, Leibler S (2003) Environmental stresses can alleviate the average deleterious effect of mutations. J Biol 2:14PubMedCrossRefGoogle Scholar
  40. Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465PubMedGoogle Scholar
  41. Labat F, Pradillon O, Garry L, Peuchmaur M, Fantin B, Denamur E (2005) Mutator phenotype confers advantage in Escherichia coli chronic urinary tract infection pathogenesis. FEMS Immunol Med Microbiol 44:317–321PubMedCrossRefGoogle Scholar
  42. Landini P, Busby SJ (1999) Expression of the Escherichia coli ada regulon in stationary phase: evidence for rpoS-dependent negative regulation of alkA transcription. J Bacteriol 181:6836–6839PubMedGoogle Scholar
  43. Laval F, Wink DA (1994) Inhibition by nitric oxide of the repair protein, O6-methylguanine-DNA-­methyltransferase. Carcinogenesis 15:443–447PubMedCrossRefGoogle Scholar
  44. Layton JC, Foster PL (2003) Error-prone DNA polymerase IV is controlled by the stress-response sigma factor, RpoS, in Escherichia coli. Mol Microbiol 50:549–561PubMedCrossRefGoogle Scholar
  45. Layton JC, Foster PL (2005) Error-prone DNA polymerase IV is regulated by the heat shock chaperone GroE in Escherichia coli. J Bacteriol 187:449–457PubMedCrossRefGoogle Scholar
  46. Le Chat L, Fons M, Taddei F (2006) Escherichia coli mutators: selection criteria and migration effect. Microbiology 152:67–73PubMedCrossRefGoogle Scholar
  47. LeClerc JE, Li B, Payne WL, Cebula TA (1996) High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208–1211PubMedCrossRefGoogle Scholar
  48. LeClerc JE, Payne WL, Kupchella E, Cebula TA (1998) Detection of mutator subpopulations in Salmonella typhimurium LT2 by reversion of his alleles. Mutat Res 400:89–97PubMedCrossRefGoogle Scholar
  49. Lenne-Samuel N, Wagner J, Etienne H, Fuchs RP (2002) The processivity factor beta controls DNA polymerase IV traffic during spontaneous mutagenesis and translesion synthesis in vivo. EMBO Rep 3:45–49PubMedCrossRefGoogle Scholar
  50. Levy MS, Balbinder E, Nagel R (1993) Effect of mutations in SOS genes on UV-induced precise excision of Tn10 in Escherichia coli. Mutat Res 293:241–247PubMedCrossRefGoogle Scholar
  51. Li B, Tsui HC, LeClerc JE, Dey M, Winkler ME, Cebula TA (2003) Molecular analysis of mutS expression and mutation in natural isolates of pathogenic Escherichia coli. Microbiology 149:1323–1331PubMedCrossRefGoogle Scholar
  52. Little JW, Edmiston SH, Pacelli Z, Mount DW (1980) Cleavage of the Escherichia coli lexA protein by the recA protease. Proc Natl Acad Sci USA 77:3225–3229PubMedCrossRefGoogle Scholar
  53. Mao EF, Lane L, Lee J, Miller JH (1997) Proliferation of mutators in a cell population. J Bacteriol 179:417–422PubMedGoogle Scholar
  54. Matic I, Rayssiguier C, Radman M (1995) Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80:507–515PubMedCrossRefGoogle Scholar
  55. Matic I, Taddei F, Radman M (1996) Genetic barriers among bacteria. Trends Microbiol 4:69–72PubMedCrossRefGoogle Scholar
  56. Matic I, Radman M, Taddei F, Picard B, Doit C, Bingen E, Denamur E, Elion J (1997) Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277:1833–1834PubMedCrossRefGoogle Scholar
  57. Matic I, Taddei F, Radman M (2000) No genetic barriers between Salmonella enterica serovar typhimurium and Escherichia coli in SOS-induced mismatch repair-deficient cells. J Bacteriol 182:5922–5924PubMedCrossRefGoogle Scholar
  58. McKenzie GJ, Lee PL, Lombardo MJ, Hastings PJ, Rosenberg SM (2001) SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol Cell 7:571–579PubMedCrossRefGoogle Scholar
  59. Mellon I, Champe GN (1996) Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli. Proc Natl Acad Sci USA 93:1292–1297PubMedCrossRefGoogle Scholar
  60. Mikulskis AV, Cornelis GR (1994) A new class of proteins regulating gene expression in enterobacteria. Mol Microbiol 11:77–86PubMedCrossRefGoogle Scholar
  61. Morimatsu K, Kowalczykowski SC (2003) RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11:1337–1347PubMedCrossRefGoogle Scholar
  62. Moxon R, Bayliss C, Hood D (2006) Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 40:307–333PubMedCrossRefGoogle Scholar
  63. Nilsson AI, Kugelberg E, Berg OG, Andersson DI (2004) Experimental adaptation of Salmonella typhimurium to mice. Genetics 168:1119–1130PubMedCrossRefGoogle Scholar
  64. Nohmi T (2006) Environmental stress and lesion-bypass DNA polymerases. Annu Rev Microbiol 60:231–253PubMedCrossRefGoogle Scholar
  65. Nystrom T (2004) Growth versus maintenance: a trade-off dictated by RNA polymerase availability and sigma factor competition? Mol Microbiol 54:855–862PubMedCrossRefGoogle Scholar
  66. Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T et al (2001) The Y-family of DNA polymerases. Mol Cell 8:7–8PubMedCrossRefGoogle Scholar
  67. Oliver A, Canton R, Campo P, Baquero F, Blazquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254PubMedCrossRefGoogle Scholar
  68. Oliver A, Baquero F, Blazquez J (2002) The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol 43:1641–1650PubMedCrossRefGoogle Scholar
  69. Pal C, Macia MD, Oliver A, Schachar I, Buckling A (2007) Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450:1079–1081PubMedCrossRefGoogle Scholar
  70. Patten CL, Kirchhof MG, Schertzberg MR, Morton RA, Schellhorn HE (2004) Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genomics 272:580–591PubMedCrossRefGoogle Scholar
  71. Peterson CN, Mandel MJ, Silhavy TJ (2005) Escherichia coli starvation diets: essential nutrients weigh in distinctly. J Bacteriol 187:7549–7553PubMedCrossRefGoogle Scholar
  72. Prunier AL, Malbruny B, Laurans M, Brouard J, Duhamel JF, Leclercq R (2003) High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J Infect Dis 187:1709–1716PubMedCrossRefGoogle Scholar
  73. Rattray AJ, Strathern JN (2003) Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu Rev Genet 37:31–66PubMedCrossRefGoogle Scholar
  74. Richardson AR, Yu Z, Popovic T, Stojiljkovic I (2002) Mutator clones of Neisseria meningitidis in epidemic serogroup A disease. Proc Natl Acad Sci USA 99:6103–6107PubMedCrossRefGoogle Scholar
  75. Rinken R, Wackernagel W (1992) Inhibition of the RecBCD-dependent activation of Chi recombinational hot spots in SOS-induced cells of Escherichia coli. J Bacteriol 174:1172–1178PubMedGoogle Scholar
  76. Roberts JW, Devoret R (1983) Lysogenic induction. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA (eds) Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 123–144Google Scholar
  77. Sassanfar M, Roberts JW (1990) Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol 212:79–96PubMedCrossRefGoogle Scholar
  78. Saumaa S, Tover A, Kasak L, Kivisaar M (2002) Different spectra of stationary-phase mutations in early-arising versus late-arising mutants of Pseudomonas putida: involvement of the DNA repair enzyme MutY and the stationary-phase sigma factor RpoS. J Bacteriol 184:6957–6965PubMedCrossRefGoogle Scholar
  79. Sedgwick SG, Goodwin PA (1985) Differences in mutagenic and recombinational DNA repair in enterobacteria. Proc Natl Acad Sci USA 82:4172–4176PubMedCrossRefGoogle Scholar
  80. Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution of high mutation rates in experimental populations of E. coli. Nature 387:703–705PubMedCrossRefGoogle Scholar
  81. Sutton MD, Smith BT, Godoy VG, Walker GC (2000) The SOS response: recent insights into umuDC-dependent mutagenesis and DNA damage tolerance. Annu Rev Genet 34:479–497PubMedCrossRefGoogle Scholar
  82. Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon PH, Godelle B (1997a) Role of mutator alleles in adaptive evolution. Nature 387:700–702PubMedCrossRefGoogle Scholar
  83. Taddei F, Hayakawa H, Bouton M, Cirinesi A, Matic I, Sekiguchi M, Radman M (1997b) Counteraction by MutT protein of transcriptional errors caused by oxidative damage. Science 278:128–130PubMedCrossRefGoogle Scholar
  84. Tanaka MM, Bergstrom CT, Levin BR (2003) The evolution of mutator genes in bacterial populations: the roles of environmental change and timing. Genetics 164:843–854PubMedGoogle Scholar
  85. Tenaillon O, Toupance B, Le Nagard H, Taddei F, Godelle B (1999) Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. Genetics 152:485–493PubMedGoogle Scholar
  86. Tenaillon O, Denamur E, Matic I (2004) Evolutionary significance of stress-induced mutagenesis in bacteria. Trends Microbiol 12:264–270PubMedCrossRefGoogle Scholar
  87. Tompkins JD, Nelson JL, Hazel JC, Leugers SL, Stumpf JD, Foster PL (2003) Error-prone polymerase, DNA polymerase IV, is responsible for transient hypermutation during adaptive mutation in Escherichia coli. J Bacteriol 185:3469–3472PubMedCrossRefGoogle Scholar
  88. Travis JM, Travis ER (2002) Mutator dynamics in fluctuating environments. Proceedings 269:591–597Google Scholar
  89. Travis ER, Travis JM (2004) Mutators in space: the dynamics of high-mutability clones in a two-­patch model. Genetics 167:513–522PubMedCrossRefGoogle Scholar
  90. Tröbner W, Piechocki R (1981) Competition growth between Escherichia coli mutL and mut + in continuously growing cultures. Z Allg Mikrobiol 21:347–349PubMedCrossRefGoogle Scholar
  91. Trobner W, Piechocki R (1984) Selection against hypermutability in Escherichia coli during long term evolution. Mol Gen Genet 198:177–178PubMedCrossRefGoogle Scholar
  92. Tröbner W, Piechocki R (1984) Selection against hypermutability in Escherichia coli during long term evolution. Mol Gen Genet 198:177–178PubMedCrossRefGoogle Scholar
  93. Tsui HC, Feng G, Winkler ME (1997) Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12. J Bacteriol 179: 7476–7487PubMedGoogle Scholar
  94. Watson ME Jr, Burns JL, Smith AL (2004) Hypermutable Haemophilus influenzae with mutations in mutS are found in cystic fibrosis sputum. Microbiology 150:2947–2958PubMedCrossRefGoogle Scholar
  95. Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603PubMedCrossRefGoogle Scholar
  96. Wink DA, Laval J (1994) The Fpg protein, a DNA repair enzyme, is inhibited by the biomediator nitric oxide in vitro and in vivo. Carcinogenesis 15:2125–2129PubMedCrossRefGoogle Scholar
  97. Yang W (2003) Damage repair DNA polymerases Y. Curr Opin Struct Biol 13:23–30PubMedCrossRefGoogle Scholar
  98. Yang H, Wolff E, Kim M, Diep A, Miller JH (2004) Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach. Mol Microbiol 53:283–295PubMedCrossRefGoogle Scholar
  99. Zhao J, Winkler ME (2000) Reduction of GC ® TA transversion mutation by overexpression of MutS in Escherichia coli K-12. J Bacteriol 182:5025–5028PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Faculté de Médecine Paris DescartesINSERM U1001, Université Paris Descartes, Sorbonne Paris CitéParis Cedex 15France

Personalised recommendations