Abstract
The underlying space for all the analysis in this book is the set of real numbers. In this chapter we set down some basic properties of this set. These properties will serve as our axioms in the sense that it is possible to derive all the properties of the real numbers using only these axioms. However, we will avoid getting bogged down in this endeavor. Some readers may wish to refer to the appendix on set notation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Polynomials like this, where the highest power has coefficient 1, are called monic polynomials.
- 2.
An integer p ≥ 2 is a prime provided the only positive factors of p are 1 and p.
References
Abbott, S.D.: Understanding Analysis. Springer, New York (2010)
Bagby, R.J.: Introductory Analysis – A Deeper View of Calculus. Academic, San Diego (2001)
Bauldry, W.C.: Introduction to Real Analysis – An Educational Approach. Wiley (2010)
Beals, R.: Advanced Mathematical Analysis. Graduate Texts in Mathematics, vol. 12. Springer, New York/Heidelberg/Berlin (1973). Also, Analysis–an Introduction, Cambridge University Press 2004
Bear, H.S.: An Introduction to Mathematical Analysis. Academic, San Diego (1997)
Beardon, A.F.: Limits – A New Approach to Real Analysis. Undergraduate Texts in Mathematics. Springer, New York/Heidelberg/Berlin (1997)
Berberian, S.K.: A First Course in Real Analysis. Springer, New York (1994)
Birkhoff, G., Mac Lane, S.: A Survey of Modern Algebra. Macmillan, New York (1953). A. K. Peters/CRC 1998
Boas, R.P. Jr.: A Primer of Real Functions, 4th edn. Revised and updated by Harold P. Boas. Carus Monograph, vol. 13. Mathematical Association of America, Washington, DC (1996)
Borman, J.L.: A remark on integration by parts. Amer. Math. Monthly 51, 32–33 (1944)
Botsko, M.W.: Quicky problem. Math. Mag. 85, 229 (2012)
Brannan, D.: A First Course in Mathematical Analysis. Cambridge University Press, Cambridge/New York (2006)
Bressoud, D.: A Radical Approach to Real Analysis, 2nd edn. The Mathematical Association of America, Washington, DC (2007)
Burckel, R.B.: An Introduction to Classical Complex Analysis, vol. 1. Birkhäuser, Basel (1979)
Burgess, C.E.: Continuous functions and connected graphs. Amer. Math. Monthly 97, 337–339 (1990)
Clark, C.: The Theoretical Side of Calculus. Wadsworth, Belmont (1972). Reprinted by Krieger, New York 1978
Corominas, E., Sunyer Balaguer, F.: Conditions for an infinitely differentiable function to be a polynomial, Rev. Mat. Hisp.-Amer. (4) 14, 26–43 (1954). (Spanish)
Cunningham, F. Jr.: The two fundamental theorems of calculus. Amer. Math. Monthly 72, 406–407 (1975)
Dangello, F., Seyfried, M.: Introductory Real Analysis. Houghton Mifflin, Boston, (2000)
Donoghue, W.F. Jr.: Distributions and Fourier Transforms. Academic, New York (1969)
Dunham, W.: The Calculus Gallery: Masterpieces from Newton to Lebesgue. Princeton University Press, Princeton/Woodstock (2008)
Fitzpatrick, P.M.: Real Analysis. PWS, Boston (1995)
Gardiner, A.: Infinite Processes, Background to Analysis. Springer, New York/Heidelberg/Berlin (1982). Republished as Understanding Infinity – The Mathematics of Infinite Processes. Dover 2002
Garding, L.: Encounter with Mathematics. Springer, New York/Heidelberg/Berlin (1977)
Gaskill, H.S., Narayanaswami, P.P.: Elements of Real Analysis. Prentice-Hall, Upper Saddle River (1998)
Gaughan, E.D.: Introduction to Analysis, 5th edn. American Mathematical Society, Providence (2009)
Gordon, R.A.: Real Analyis – A First Course, 2nd edn. Addison-Wesley, Boston (2002)
Greenstein, D.S.: A property of the logarithm. Amer. Math. Monthly 72, 767 (1965)
Hewitt, E.: Integration by parts for Stieltjes integrals. Amer. Math. Monthly 67, 419–423 (1960)
Hewitt, E.: The role of compactness in analysis. Amer. Math. Monthly 67, 499–516 (1960)
Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Graduate Texts in Mathematics, vol. 25. Springer, New York/Heidelberg/Berlin (1975)
Hijab, O.: Introduction to Calculus and Classical Analysis. Undergraduate Texts in Mathematics, 2nd edn. Springer, New York/Heidelberg/Berlin (2007)
Hoffman, K.: Analysis in Euclidean Space. Prentice-Hall, Englewood Cliffs (1975). Republished by Dover 2007
Johnsonbaugh, R., Pfaffenberger, W.E.: Foundations of Mathematical Analysis. Marcel Dekker, New York (1980). Republished by Dover 2010
Kantrowitz, R.: Series that converge absolutely but don’t converge. Coll. Math. J. 43, 331–333 (2012)
Kenton, S.: A natural proof of the chain rule. Coll. Math. J. 30, 216–218 (1999)
Kosmala, W.: Advanced Calculus – A Friendly Approach. Prentice-Hall, Upper Saddle River (1999)
Krüppel, M.: On the zeros of an infinitely often differentiable function and their derivatives. Rostock. Math. Kolloq. 59, 63–70 (2005)
Landau, E.: Foundations of Analysis. Chelsea, New York (1951). Republished by American Mathematical Society 2001
Lang, S.: Undergraduate Analysis. Undergraduate Texts in Mathematics, 2nd edn. Springer, New York/Heidelberg/Berlin (2010)
Lay, S.R.: Analysis – An Introduction to Proof, 4th edn. Prentice-Hall (2004)
Lewin, J.: A truly elementary approach to the bounded convergence theorem. Amer. Math. Monthly 93, 395–397 (1986)
Lewin, J., Lewin, M.: An Introduction to Mathematical Analysis, 2nd edn. McGraw-Hill, New York (1993)
Lynch, M.: A continuous nowhere differentiable function. Amer. Math. Monthly 99, 8–9 (1992)
Lynch, M.: A continuous function which is differentiable only at the rationals. Math. Mag. 86, April issue (2013)
Mattuck, A.: Introduction to Analysis. Prentice-Hall, Upper Saddle River (1999)
Morgan, F.: Real Analysis. American Mathematical Society, Providence (2005)
Newman, D.J.: A Problem Seminar. Springer, New York/Berlin/Heidelberg (1982)
Niven, I.: Irrational Numbers. Carus Monograph, vol. 11. Mathematical Association of America, Washington, DC (1956)
Niven, I., Zuckerman, H.S., Montgomery, H.I.: An Introduction to the Theory of Numbers, 5th edn. Wiley, New York (1991)
Pedrick, G.: A First Course in Analysis. Undergraduate Texts in Mathematics. Springer, New York/Heidelberg/Berlin (1994)
Phillips, E.: An Introduction to Analysis and Integration Theory. Intext Educational Publishers, Scranton/Toronto/London (1971)
Protter, M.H., Morrey, C.B.: A First Course in Real Analysis. Undergraduate Texts in Mathematics, 2nd edn. Springer, New York/Heidelberg/Berlin (1997)
Pugh, C.: Real Mathematical Analysis. Springer, New York/Heidelberg/Berlin (2002)
Randolph, J.F.: Basic Real and Abstract Analysis. Academic, New York (1968)
Reed, M.: Fundamental Ideas of Analysis. Wiley, New York (1998)
Robdera, M.A.: A Concise Approach to Mathematical Analysis. Springer, London/New York (2003)
Rosenlicht, M.: Introduction to Analysis. Dover, New York (1985)
Ross, K.A.: First digits of squares and cubes. Math. Mag. 85, 36–42 (2012)
Ross, K.A., Wright, C.R.B.: Discrete Mathematics, 5th edn. Prentice-Hall, Upper Saddle River (2003)
Rotman, J.: Journey into Mathematics – An Introduction to Proofs. Prentice-Hall, Upper Saddle River (1998)
Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)
Schramm, M.J.: Introduction to Real Analysis. Prentice-Hall, Upper Saddle River (1996). Dover 2008
Stolz, O.: Über die Grenzwerthe der Quotienten. Math. Ann. 15, 556–559 (1879)
Stromberg, K.: An Introduction to Classical Real Analysis. Prindle, Weber & Schmidt, Boston (1980)
Thim, J.: Continuous Nowhere Differentiable Functions, Master’s thesis (2003), Luleå University of Technology (Sweden). http://epubl.luth.se/1402-1617/2003/320/LTU-EX-03320-SE.pdf
Thomson, B.S.: Monotone convergence theorem for the Riemann integral. Amer. Math. Monthly 117, 547–550 (2010)
van der Waerden, B.L.: Ein einfaches Beispiel einer nicht-differenzierbare Stetige Funktion. Math. Z. 32, 474–475 (1930)
Weierstrass, K.: Über continuirliche Funktionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen, Gelesen Akad. Wiss. 18 July 1872, and J. für Mathematik 79, 21–37 (1875)
Wolf, R.S.: Proof, Logic, and Conjecture: The Mathematician’s Toolbox. W. H. Freeman, New York (1998)
Wolfe, J.: A proof of Taylor’s formula. Amer. Math. Monthly 60, 415 (1953)
Zhou, L., Markov, L.: Recurrent proofs of the irrationality of certain trigonometric values. Amer. Math. Monthly 117, 360–362 (2010)
Zorn, P.: Understanding Real Analysis. A. K. Peters, Natick (2010)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this chapter
Cite this chapter
Ross, K.A. (2013). Introduction. In: Elementary Analysis. Undergraduate Texts in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6271-2_1
Download citation
DOI: https://doi.org/10.1007/978-1-4614-6271-2_1
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-6270-5
Online ISBN: 978-1-4614-6271-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)