Skip to main content

Problem Posing for and Through Investigations in a Dynamic Geometry Environment

  • Chapter
Mathematical Problem Posing

Part of the book series: Research in Mathematics Education ((RME))

Abstract

This chapter analyzes three different types of problem posing associated with geometry investigations in school mathematics, namely (a) problem posing through proving; (b) problem posing for investigation; and (c) problem posing through investigation. Mathematical investigations and problem posing which are central for activities of professional mathematicians, when integrated in school mathematics, allow teachers and students to experience meaningful mathematical activities, including the discovery of new mathematical facts when posing mathematical problems. A dynamic geometry environment (DGE) plays a special role in mathematical problem posing. I describe different types of problem posing associated with geometry investigations by using examples from a course with prospective mathematics teachers. Starting from one simple problem I invite the readers to track one particular mathematical activity in which participants arrive at least at 25 new problems through investigation in a DGE and through proving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Borba, M. C., & Villarreal, M. E. (2005). Humans-with-media and the reorganization of mathematical thinking: Information and communication technologies, modeling, visualization, and experimentation. New York, NY: Springer.

    Google Scholar 

  • Brown, S., & Walter, M. (1993). Problem posing: Reflections and applications. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Brown, S., & Walter, M. (2005). The art of problem posing (3rd ed.). New York, NY: Routledge.

    Google Scholar 

  • Chazan, D., & Yerushalmy, M. (1998). Charting a course for secondary geometry. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (pp. 67–90). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.

    Article  Google Scholar 

  • Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. The Journal of the Learning Sciences, 13(1), 15–42.

    Article  Google Scholar 

  • Cooney, T. J., Shealy, B. E., & Arvold, B. (1998). Conceptualizing belief structures of preservice secondary mathematics teachers. Journal for Research in Mathematics Education, 29, 306–333.

    Article  Google Scholar 

  • Da Ponte, J. P. (2007). Investigations and explorations in the mathematics classroom. ZDM: The International Journal on Mathematics Education, 39, 419–430.

    Article  Google Scholar 

  • Da Ponte, J. P., & Henriques, A. C. (2013). Problem posing based on investigation activities by university students. Educational Studies in Mathematics, 83, 145–156.

    Article  Google Scholar 

  • De Villiers, M. (2012). An illustration of the explanatory and discovery functions of proof. In Proceedings of the 12th International Congress on Mathematical Education. Regular Lectures (pp. 1122–1137). Seoul, Korea: COEX.

    Google Scholar 

  • Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5), 270.

    Article  Google Scholar 

  • Ellerton, N. F. (2013). Engaging pre-service middle-school teacher-education students in mathematics problem posing: Development of an active learning framework. Educational Studies in Mathematics, 83, 87–101.

    Article  Google Scholar 

  • Healy, L., & Lagrange, J.-B. (2010). Introduction to section 3. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology: Rethinking the terrain. The 17th ICMI Study (pp. 287–292). New York: Springer.

    Google Scholar 

  • Hoehn, L. (1993). Problem posing in geometry. In S. Brown & M. Walter (Eds.), Problem posing: Reflections and applications (pp. 281–288). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Hölzl, R. (1996). How does “dragging” affect the learning of geometry? International Journal of Computers for Mathematical Learning, 1, 169–187.

    Article  Google Scholar 

  • Hölzl, R. (2001). Using dynamic geometry software to add contrast to geometric situation—A case study. International Journal of Computers for Mathematical Learning, 6(1), 63–86.

    Article  Google Scholar 

  • Jones, K. (2000). Providing a foundation for deductive reasoning: students’ interpretations when using dynamic geometry software and their evolving mathematical explanations. Educational Studies in Mathematics, 44, 55–85.

    Article  Google Scholar 

  • Laborde, C. (1992). Solving problems in computer based geometry environments: The influence of the features of the software. ZDM: The International Journal on Mathematics Education, 92(4), 128–135.

    Google Scholar 

  • Lampert, M., & Ball, D. (1998). Teaching, multimedia, and mathematics: Investigations of real practice. The Practitioner Inquiry Series. New York, NY: Teachers College Press.

    Google Scholar 

  • Leikin, R. (2004). Towards high quality geometrical tasks: Reformulation of a proof problem. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th International Conference for the Psychology of Mathematics Education (Vol. 3, pp. 209–216). Bergen, Norway: International Group for the Psychology in Mathematics Education.

    Google Scholar 

  • Leikin, R. (2008). Teams of prospective mathematics teachers: Multiple problems and multiple solutions. In T. Wood (Series Ed.) & K. Krainer (Vol. Ed.), International handbook of mathematics teacher education: Participants in mathematics teacher education: Individuals, teams, communities, and networks (Vol. 3, pp. 63–88). Rotterdam, The Netherlands: Sense.

    Google Scholar 

  • Leikin, R. (2012). What is given in the problem? Looking through the lens of constructions and dragging in DGE. Mediterranean Journal for Research in Mathematics Education, 11(1–2), 103–116.

    Google Scholar 

  • Leikin, R., & Grossman, D. (2013). Teachers modify geometry problems: From proof to investigation. Educational Studies in Mathematics, 82(3), 515–531.

    Article  Google Scholar 

  • Mamona-Downs, J. (1993). On analyzing problem posing. In I. Hirabayashi, N. Nohda, K. Shigematsu, & F. L. Lin (Eds.), Proceedings of the 17th International Conference for the Psychology of Mathematics Education (Vol. 3, pp. 41–47). Tsukuba, Japan: International Group for the Psychology in Mathematics Education.

    Google Scholar 

  • Mariotti, M. A. (2002). The influence of technological advances on students’ mathematics learning. In L. D. English (Ed.), Handbook of international research in mathematics education (pp. 695–723). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Parzysz, B. (1988). Knowing vs seeing: Problems of the plane representation of space geometry figures. Educational Studies in Mathematics, 19(1), 79–92.

    Article  Google Scholar 

  • Pehkonen, E. (1995). Using open-ended problem in mathematics. ZDM: The International Journal on Mathematics Education, 27(2), 67–71.

    Google Scholar 

  • Schwartz, J. L., Yerushalmy, M., & Wilson, B. (Eds.). (1993). The geometric supposer: What is it a case of? Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14, 19–28.

    Google Scholar 

  • Silver, E. A., Mamona-Downs, J., Leung, S. S., & Kenny, P. A. (1996). Posing mathematical problems in a complex environment: An exploratory study. Journal for Research in Mathematics Education, 27, 293–309.

    Article  Google Scholar 

  • Stoyanova, E. (1998). Problem posing in mathematics classrooms. In A. McIntosh & N. F. Ellerton (Eds.), Research in mathematics education: A contemporary perspective (pp. 164–185). Perth, Australia, Australia: MASTEC.

    Google Scholar 

  • Wells, G. (1999). Dialogic inquiry: Towards a sociocultural practice and theory of education. Cambridge, England: Cambridge University Press.

    Book  Google Scholar 

  • Yerushalmy, M., & Chazan, D. (1993). Overcoming visual obstacles with the aid of the Supposer. In J. L. Schwartz, M. Yerushalmy, & B. Wilson (Eds.), The geometric supposer: What is it a case of? (pp. 25–56). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Yerushalmy, M., Chazan, D., & Gordon, M. (1990). Mathematical problem posing: Implications for facilitating student inquiry in classrooms. Instructional Science, 19, 219–245.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roza Leikin .

Editor information

Editors and Affiliations

Appendices

Appendix A

Proof for Problem 5h (Figure 18.5)

  1. (1)

    \( ET\left|\right|CA \) thus triangles CBQ and MEQ are similar;

  2. (2)

    \( \frac{QE}{BQ}=\frac{5}{4} \) (2b, Figure 18.4);

  3. (3)

    From (1) and (2) \( \frac{EM}{BC}=\frac{5}{4} \);

  4. (4)

    \( \frac{AC}{BC}=\frac{5}{4} \) (1b, Figure 18.4) thus \( CA=EM \).

  5. (5)

    Hence \( EM\left|\right|CA \) and \( EM=CA \); that is CEMA is a parallelogram.

Appendix B

Proof for Problems 7a, 7b (Figure 18.7)

Construction outline:

CAME is a rhombus, T-midpoint on EM, \( F=AT\cap CM \)

DK on \( AT:D:DA=AF,\kern0.24em K:KF=FA \)

Prove:

  1. 7a.

    \( DC=DF\left(\iff DK=2DC\right) \)

  2. 7b.

    \( CAME\;\mathrm{is}\;\mathrm{a}\;\mathrm{square}\;\mathrm{when}\angle CDK=36.9{}^{\circ} \)

  3. 7c.

    \( {K}^{\prime}\mathrm{on}\;CE\;:{K}^{\prime }E=EC\iff {K}^{\prime}\mathrm{coincides}\;\mathrm{with}\;K \)

figure a

Proof

  1. 1.

    According to the construction: \( AC=CE=EM= AM=x \), \( ET=TM=\frac{1}{2}x \), \( FA= AD=2y \), \( FK=DF=4y\Rightarrow DK=8y \);

  2. 2.

    \( CAME\;\mathrm{is}\;\mathrm{a}\;\mathrm{rhombus}\Rightarrow \varDelta CAF\cong \varDelta CEF\Rightarrow FE=2y \);

  3. 3.

    MF-bisects angle \( AMT,\kern0.24em AM=2MT\Rightarrow AF=FT \); \( FT=y \); \( TK=3y \)

  4. 4.
    $$ \begin{array}{l}\varDelta TEK\cong \varDelta TMA;\kern0.22em AT=TK,\kern0.24em ME\left|\right|CA\Rightarrow TE\;\mathrm{midline}\;\mathrm{on}\;\\ {}\kern4.2em \varDelta\;ACK\Rightarrow EK=CE\end{array} $$
    (18.7c)
  5. 5.
    $$ \begin{array}{l}TE\;\mathrm{midline}\;\mathrm{on}\;\varDelta\;ACK\Rightarrow CD=2EF\Rightarrow DC=4y\\ {}\kern6em \Rightarrow DC=AF\left(\iff DK=2DC\right)\end{array} $$
    (18.7a)
  6. 6.

    \( \varDelta FEK\sim \varDelta DCK\sim \varDelta DAC\Rightarrow \angle DCA=\angle CKD \)

  7. 7.
    $$ \begin{array}{l}\mathrm{If}\; CAME\;\mathrm{is}\;\mathrm{a}\;\mathrm{square}\;\alpha =45{}^{\circ};\kern0.24em \tan \beta =\frac{1}{2}\iff \beta =26.57{}^{\circ}\iff \angle CDK\\ {}\kern5.52em =71.57{}^{\circ}\angle CDK=36.9{}^{\circ}\end{array} $$
    (18.7b)

Appendix C

Problems posed for and through investigations by a PMT who participated in the study

Rasha’s Problem

Initial problem: Midline in a triangle

The segment connecting the midpoints of two sides of a triangle is parallel to the third side and is half as long. (Given: \( \varDelta\;ABC,\;AE= EB,\;AP=PC \); Prove: \( EP\left|\right|BC,\kern0.24em EP=\frac{1}{2}BC \))

Posed problems:

Given:

$$ \varDelta ABC,\kern0.22em AE= EB,\kern0.22em AP=PC $$
$$ \begin{array}{l}PD\ \mathrm{is}\ \mathrm{a}\ \mathrm{continuation}\ \mathrm{of}EP,\kern0.24em ED=2EP,\kern0.24em F=EC\cap BP,\kern0.22em G=BD\cap AC,\\ {}\kern8.88em S=EC\cap BD,\kern0.24em O=FG\cap SP\end{array} $$

Prove:

$$ \frac{ED}{FG}=3;\kern0.36em \frac{BA}{SP}=4,\kern0.22em FO=OG,\kern0.22em OP=2 OS $$
figure b

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leikin, R. (2015). Problem Posing for and Through Investigations in a Dynamic Geometry Environment. In: Singer, F., F. Ellerton, N., Cai, J. (eds) Mathematical Problem Posing. Research in Mathematics Education. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6258-3_18

Download citation

Publish with us

Policies and ethics