Skip to main content

Online Mass Spectrometric Analysis of Sulfur Compounds from Hydrothermal Reactions of Biomass Wastes for Hydrogen Production

  • Chapter
  • First Online:
Advances in Biofuels

Abstract

Biomass/biowaste gasification using supercritical water is a new way to produce hydrogen gas, a clean and renewable energy. This method besides producing hydrogen will also produce heteroatomic compounds, substances that can be a burden to the environment; therefore, it is important to clarify the mechanisms of these compounds. A newly developed online mass spectrometry determination of the sulfur compounds released during hydrothermal reaction from l-cysteine as model compound and durian fruit as practical sample was done. The effect of alkaline Ca(OH)2 addition on the formation of sulfur heteroatom compounds has been studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouelenien F, Fujiwara W, Namba Y, Kosseva M, Nishio N, Nakashimada Y (2010) Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresour Technol 101(16):6368–6373

    Article  Google Scholar 

  • Alich JA Jr, Witwer JG (1997) Agricultural and forestry wastes as an energy resource. Sol Energy 19(6):625–629

    Article  Google Scholar 

  • Alif MF, Matsumoto K, Kitagawa K (2011) On-line mass spectrometric analysis of hydrothermal reactions for biomass model sample containing sulfur compounds. Microchem J 99(2):394–399

    Article  Google Scholar 

  • Alif MF, Matsumoto K, Kitagawa K (2012) On-line mass spectrometric analysis of sulfur compounds in hydrothermal process of durian and vegetables. Microchem J 103:179–184

    Article  Google Scholar 

  • Baumlin S, Broust F, Bazer-Bachi F, Bourdeaux T, Herbinet O, Ndiaye FT, Ferrer M, Lédé J (2006) Production of hydrogen by lignins fast pyrolysis. Int J Hydrogen Energy 31(15): 2179–2192

    Article  Google Scholar 

  • Boocock D, Mackay D, Franco H, Lee P (1980) The production of synthetic organic liquids from wood using a nickel catalyst. Can J Chem Eng 58:466–469

    Article  Google Scholar 

  • Calzavara Y, Joussot-Dubien C, Boissonnet G, Sarrade S (2005) Evaluation of biomass gasification in supercritical water process for hydrogen production. Energy Conversion Manage 46(4):615–631

    Article  Google Scholar 

  • Dent CG, Krol AA (1990) Municipal solid waste conversion to energy. Biomass 22(1–4): 307–327

    Article  Google Scholar 

  • El-Shinnawi MM, Alaa MN, El-Din E-SSA, Badawi MA (1989) Biogas production from crop residues and aquatic weeds resources. Conserv Recycling 3(1):33–45

    Article  Google Scholar 

  • Fujii T, Selvin PC, Sablier M, Iwase K (2001) Lithium ion attachment mass spectrometry for on-­line analysis of trace components in air: direct introduction. Int J Mass Spectrom 209(1):39–45

    Article  Google Scholar 

  • Gómez A, Rodrigues M, Montañés C, Dopazo C, Fueyo N (2010) The potential for electricity generation from crop and forestry residues in Spain. Biomass Bioenergy 34(5):703–719

    Article  Google Scholar 

  • Greve R (1974) Phytochemische untersuchungen an der durianfrucht [phytochemical research on the durian fruit] [in German]. Ph.D. Thesis, University of Hamburg

    Google Scholar 

  • Ignaciuk AM, Dellink RB (2006) Biomass and multi-product crops for agricultural and energy production—an AGE analysis. Energy Econ 28(3):308–325

    Article  Google Scholar 

  • Ishida Y, Kumabe K, Hata K, Tanifuji K, Hasegawa T, Kitagawa K, Isu N, Funahashi Y, Asai T (2009) Selective hydrogen generation from real biomass through hydrothermal reaction at relatively low temperatures. Biomass Bioenergy 33:8–13

    Article  Google Scholar 

  • KaraosmanoÄŸlu F, Tetik E, Göllü E (1999) Biofuel production using slow pyrolysis of the straw and stalk of the rapeseed plant. Fuel Process Technol 59(1):1–12

    Article  Google Scholar 

  • Malinen J, Pesonen M, Määttä T, Kajanus M (2001) Potential harvest for wood fuels (energy wood) from logging residues and first thinnings in Southern Finland. Biomass Bioenergy 20(3):189–196

    Article  Google Scholar 

  • Manara P, Zabaniotou A (2012) Towards sewage sludge based biofuels via thermochemical conversion – a review. Renew Sustain Energy Rev 16(5):2566–2582

    Article  Google Scholar 

  • Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, van Swaaij WPM, van de Beld B, Elliott DC, Neuenschwander GG, Kruse A, Antal MJ (2005) Biomass gasification in near- and super-­critical water: status and prospects. Biomass Bioenergy 29:269–292

    Article  Google Scholar 

  • Moser R, Duvel D, Greve R (1980) Volatile constituents and fatty acid composition of lipids in Durio zibethinus. Phytochemistry 19(1):79–81

    Article  Google Scholar 

  • Neti Y, Erlinda ID, Virgilio VG (2011) The effect of spontaneous fermentation on the volatile flavor constituents of durian. Int Food Res J 18:635–641

    Google Scholar 

  • Nges IA, Escobar F, Xinmei F, Björnsson L (2012) Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production. Waste Manage 32(1):53–59

    Article  Google Scholar 

  • Paine LK, Peterson TL, Undersander DJ, Rineer KC, Bartelt GA, Temple SA, Sample DW, Klemme RM (1996) Some ecological and socio-economic considerations for biomass energy crop production. Biomass Bioenergy 10(4):231–242

    Article  Google Scholar 

  • Phan AN, Ryu C, Sharifi VN, Swithenbank J (2008) Characterisation of slow pyrolysis products from segregated wastes for energy production. J Anal Appl Pyrolysis 81(1):65–71

    Article  Google Scholar 

  • Ra K, Shiotsu F, Abe J, Morita S (2012) Biomass yield and nitrogen use efficiency of cellulosic energy crops for ethanol production. Biomass Bioenergy 37:330–334

    Article  Google Scholar 

  • Ren N-Q, Xu J-F, Gao L-F, Xin L, Qiu J, Su D-X (2010) Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures. Int J Hydrogen Energy 35(7):2742–2746

    Article  Google Scholar 

  • Saka S, Ehara K, Sakaguchi S, Yoshida K (2006) Useful products from lignocellulosics by supercritical water technologies. In: The second joint international conference on sustainable energy and environment, pp 485–489

    Google Scholar 

  • Tsukagoshi M, Kitahara Y, Takahashi S, Fujii T (2012) Pyrolysis analysis of Japanese lacquer films: direct probe-Li+ ion attachment mass spectrometry versus pyrolysis/gas chromatography/mass spectrometry. J Anal Appl Pyrolysis 95:156–163

    Article  Google Scholar 

  • Wong KC, Tie DY (1995) Volatile constituents of durian (Durio zibethinus Murr.). Flavour Fragr J 10:79–83

    Article  Google Scholar 

  • Yildiz Bircan S, Kamoshita H, Kanamori R, Ishida Y, Matsumoto K, Hasegawa Y, Kitagawa K (2011) Behavior of heteroatom compounds in hydrothermal gasification of biowaste for hydrogen production. Appl Energy 88(12):4874–4878

    Article  Google Scholar 

  • Yokoyama S, Ogi T, Kogushi K, Nakamura E (1984) Direct liquefaction of wood by catalyst and water. Liq Fuels Technol 2:155–163

    Article  Google Scholar 

  • Youjun L, Guo L, Zhang X, Ji C (2012) Hydrogen production by supercritical water gasification of biomass: explore the way to maximum hydrogen yield and high carbongasification efficiency. Int J Hydrogen Energy 37(4):3177–3185

    Article  Google Scholar 

  • Zhang S-p, Li X-j, Li Q-y, Qing-li X, Yan Y-j (2011) Hydrogen production from the aqueous phase derived from fast pyrolysis of biomass. J Anal Appl Pyrolysis 92(1):158–163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alif, M.F., Matsumoto, K., Kitagawa, K. (2013). Online Mass Spectrometric Analysis of Sulfur Compounds from Hydrothermal Reactions of Biomass Wastes for Hydrogen Production. In: Pogaku, R., Sarbatly, R. (eds) Advances in Biofuels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6249-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6249-1_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-6248-4

  • Online ISBN: 978-1-4614-6249-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics