Advertisement

Membrane Photobioreactor as a Device to Increase CO2 Mitigation by Microalgae

  • Rosalam Hj. Sarbatly
  • Emma Suali
Chapter

Abstract

The integration of a membrane contactor with a photobioreactor serves two major purposes for the mitigation of CO2 by microalgae, i.e., to enhance the mass transfer and interfacial contact between two different phases and to increase the exchange process of CO2–O2 by microalgae in the photobioreactor. The membrane integrated with a photobioreactor for CO2 mitigation by microalgae can be considered as a relatively new field, and only four or five related research efforts have been published in the literature, suggesting that a significant amount of work remains to be done in this field. In addition, all of the authors agreed that a membrane contactor is capable of achieving better mass transfer than the conventional approach of using a separation column in the gas–liquid separation process. One significant problem associated with using a membrane as a CO2–O2 gas exchanger is its susceptibility to pore fouling due to the micron-size cells of the microalgae. However, pore fouling can be prevented by using a hydrophobic membrane contactor and appropriate operating conditions, both of which are discussed in detail in this work.

Keywords

CO2 sequestration Microalgae Membrane photobioreactor Biomass 

Notes

Acknowledgments

This work was financially supported by the Research Grant LRGS/TD/2011/UMP/PG/04 from Ministry of Higher Education of Malaysia. This work was also supported by the Borneo Marine Research Institute, Universiti Malaysia Sabah, Malaysia.

References

  1. Agrahari GK, Verma N, Bhattacharya PK (2011) Application of hollow fiber membrane contactor for the removal of carbon dioxide from water under liquid–liquid extraction mode. J Membr Sci 375:323–333CrossRefGoogle Scholar
  2. Bakeri G, Matsuura T, Ismail AF, Rana D (2012) A novel surface modified polyetherimide hollow fiber membrane for gas–liquid contacting processes. Sep Purif Technol 89:160–170CrossRefGoogle Scholar
  3. Bamperng S, Suwannachart T, Atchariyawut S, Jiraratananon R (2010) Ozonation of dye wastewater by membrane contactor using PVDF and PTFE membranes. Sep Purif Technol 72:186–193CrossRefGoogle Scholar
  4. Bayless D, Stuart B (2009) Sustainable energy and carbon recycling through microalgal engineering. Energeia 20(4):1–6Google Scholar
  5. Bentley CD, Carroll PM, Watanab WO (2008) Intensive rotifer production in a pilot-scale continuous culture recirculating system using nonviable microalgae and an ammonia neutralizer. J World Aquac Soc 39(5):625–635CrossRefGoogle Scholar
  6. Bottino A, Capannelli G, Comite A, Felice RD, Firpo R (2008) CO2 removal from a gas stream by membrane contactor. Sep Purif Technol 59:85–90CrossRefGoogle Scholar
  7. Brindley C, Fernandez FGA, Fernandez-Sevilla JM (2011) Analysis of light regime in continuous light distributions in photobioreactors. Bioresour Technol 102:3138–3148CrossRefGoogle Scholar
  8. Carvalho AP, Malcata FX (2001) Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow-fiber modules. Biotechnol Prog 17:265–272CrossRefGoogle Scholar
  9. Cath TY, Adams D, Childress AE (2005) Membrane contactor processes for wastewater reclamation in space II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater. J Membr Sci 257:111–119CrossRefGoogle Scholar
  10. Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50:324–329CrossRefGoogle Scholar
  11. Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high density culture of Chlorella sp. in a semic Continuous photobioreactor. Bioresour Technol 99:3389–3396CrossRefGoogle Scholar
  12. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilisation of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838CrossRefGoogle Scholar
  13. Choi SL, Suh IS, Lee CG (2003) Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzyme Microb Technol 33:403–409CrossRefGoogle Scholar
  14. Cuaresma M, Janssen M, Vilchez C, Wijffels RH (2011) Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresour Technol 102:5129–5137CrossRefGoogle Scholar
  15. Dindore VY, Brilman BWF, Feron PHM, Versteeg GF (2004) CO2 absorption at elevated pressures using a hollow fiber membrane contactor. J Membr Sci 235:99–109CrossRefGoogle Scholar
  16. Dindore VY, Brilman BWF, Feron PHM, Versteeg GF (2005) Hollow fiber membrane contactor as a gas–liquid model contactor. Chem Eng Sci 60:467–479CrossRefGoogle Scholar
  17. Doucha J, Straka F, Livansky K (2005) Utilisation of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412CrossRefGoogle Scholar
  18. Ethier S, Woisard K, Vaughan D, Wen Z (2011) Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol 102:88–93CrossRefGoogle Scholar
  19. Fabregas J, Otero A, Mased A, Dominguez A (2001) Two-stage cultures for the production of Astaxanthin from Haematococcus pluvialis. J Biotechnol 89:65–71CrossRefGoogle Scholar
  20. Fan LH, Zhang YT, Cheng LH, Zhang L, Tang DS, Chen HL (2007) Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane photobioreactor. Chem Eng Technol 30:1094–1099CrossRefGoogle Scholar
  21. Fan LH, Zhang YT, Cheng LH, Zhang L, Chen HL (2008) Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Membr Sci 325:336–345CrossRefGoogle Scholar
  22. Farges B, Duchez D, Dussap CG, Cornet J-F (2012) Preliminary characterization of carbon dioxide transfer in a hollow fiber membrane module as a possible solution for gas–liquid transfer in microgravity conditions. Adv Space Res 49:254–261CrossRefGoogle Scholar
  23. Feron PHM, Jansen AE (1995) Capture of carbon dioxide using membrane gas absorption and reuse in the horticultural industry. Energy Conversion Manage 36(6–9):411–414CrossRefGoogle Scholar
  24. Ferreira BS, Fernandes HL, Reis A, Mateus M (1998) Microporous hollow fibres for carbon dioxide absorption: mass transfer model fitting and the supplying of carbon dioxide to microalgal cultures. Chem Technol Biotechnol 71:61–70CrossRefGoogle Scholar
  25. Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511CrossRefGoogle Scholar
  26. Gonzalez LE, Bashan Y (2000) Increased growth of the microalga Chlorella vulgaris when ­coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium azospirillum brasilense. Appl Environ Microbiol 66(4):1527–1531CrossRefGoogle Scholar
  27. Hai T, Ahlers H, Gorenflo V, Steinbuchel A (2000) Axenic cultivation of anoxygenic phototrophic bacteria, cyanobacteria and microalgae in a new closed tubular glass photobioreactor. Appl Microbiol Biotechnol 53:383–389CrossRefGoogle Scholar
  28. Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffles RH (2002) A pneumatically agitated flat-­panel photobioreactor with gas re-circulation: anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium. Int J Hydrogen Energy 27:1331–1338CrossRefGoogle Scholar
  29. Illman AM, Scragg AH, Shales SW (2001) Increase in chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635CrossRefGoogle Scholar
  30. Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresour Technol 98:288–295CrossRefGoogle Scholar
  31. Khaisri S, deMotigny D, Tontiwachwuthikul P, Jiraratananon R (2009) Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor. Sep Purif Technol 65:290–297CrossRefGoogle Scholar
  32. Kumar PS, Hogendoorn JA, Feron PHM, Versteeg GF (2002) New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors. Chem Eng Sci 57:1639–1651CrossRefGoogle Scholar
  33. Lee JS, Sung KD, Kim MS, Park SC, Lee KW (1996) Current aspects of carbon dioxide fixation by microalgae in Korea, symposium on the capture, utilisation and disposal of CO2, Fall (Orlando) 41(4)Google Scholar
  34. Lv Y, Yu X, Tu S-T, Yan J, Dahlquist E (2012) Experimental studies on simultaneous removal of CO2 and SO2 in a polypropylene hollow fiber membrane contactor. Appl Energy 97:283–288CrossRefGoogle Scholar
  35. Mansourizadeh A, Ismail AF (2009) Hollow fiber gas–liquid membrane contactors for acid capture: a review. J Hazard Mater 171:38–53CrossRefGoogle Scholar
  36. Mattson S (2010) Rising sea drives Panama islanders to mainland, reuters news, 12 July 2010. Available online at http://www.reuters.com/assets/print?aid=USTRE66B0PL20100712. Accessed 16 July 2010
  37. Mavroudi M, Kaldis SP, Sakellaropoulus GP (2003) Reduction of CO2 emissions by a membrane contacting process. Fuel 82:2153–2159CrossRefGoogle Scholar
  38. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 6:486–496CrossRefGoogle Scholar
  39. Moreno J, Vargas MA, Olivares H, Rivas J, Guerrero MG (1998) Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. J Biotechnol 60:175–182CrossRefGoogle Scholar
  40. Negoro M, Hamasaki A, Ikuta Y, Makita T, Hirayama K, Suzuki S (1993) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 39(40):643–653CrossRefGoogle Scholar
  41. Nishikawa N, Ishibashi M, Ohta H, Akutsu N, Matsumoto H, Kamata T, Kitamura H (1995) CO2 removal by hollow-fiber gas–liquid contactor. Energ Conversion Manage 36(6–9):415–418CrossRefGoogle Scholar
  42. Nymeijer DC, Folkers B, Breebaart I, Mulder MHV, Wessling M (2004) Selection of top layer materials for gas–liquid membrane contactors. J Appl Polym Sci 92:323–334CrossRefGoogle Scholar
  43. Ota M, Kato Y, Watanabe M, Sato Y, Smith RL, Rosello-Sastre S, Posten C, Inomata H (2011) Effects of nitrate and oxygen on photoautotrophic lipid production from Chlorococcum littorale. Bioresour Technol 102:3286–3292CrossRefGoogle Scholar
  44. Pedersen OF, Dannstrom H (1997) Separation of carbon dioxide from offshore gas turbine exhaust. Energy Convers Manage 38:S81–S86CrossRefGoogle Scholar
  45. Phattaranawik J, Leiknes T, Pronk W (2005) Mass transfer studies in flat-sheet membrane contactor with ozonation. J Membr Sci 247:153–167CrossRefGoogle Scholar
  46. Pors Y, Wustenberg A, Ehwald R (2010) A batch culture method for microalgae and cyanobacteria with CO2 supply through polyethylene membrane. J Phycol 46:825–883CrossRefGoogle Scholar
  47. Pruvost J, Vooren GV, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100:5988–5995CrossRefGoogle Scholar
  48. Rodrıguez JJG, Miron AS, Camacho FG, Garcıa MCC, Belarbi EH, Grima EM (2010) Culture of dinoflagellates in a fed-batch and continuous stirred-tank photobioreactors: growth, oxidative stress and toxin production. Process Biochem 45:660–666CrossRefGoogle Scholar
  49. Sananurak C, Lirdwitayaprasit T, Menasveta P (2009) Development of a closed-recirculating, continuous culture system for microalga (Tetraselmis suecica) and rotifer (Brachionus plicatilis) production. Sci Asia 35:118–124CrossRefGoogle Scholar
  50. Sanchez JF, Fernandez-Sevill JM, Acien FG, Ceron MC, Perez-Parra J, Molina-Grima E (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79:719–729CrossRefGoogle Scholar
  51. Sarbatly R, Suali E (2012) A potential of carbon dioxide utilisation by microalgae in Malaysia. Int J Glob Environ Issue 12(2–4):150–160CrossRefGoogle Scholar
  52. Shao J, Liu H, He Y (2008) Boiler feed water deoxygenation using hollow fiber membrane contactor. Desalination 234:370–377CrossRefGoogle Scholar
  53. Simons K, Nijmeijer K, Wessling M (2009) Gas–liquid membrane contactors for CO2 removal. J Membr Sci 340:214–220CrossRefGoogle Scholar
  54. Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Article sea ice decline: faster than forecast. Geophys Res Lett 34:L09501. doi:10.1029/2007/GLo29703CrossRefGoogle Scholar
  55. Suali E, Sarbatly R (2012) Microalgae conversion to biofuel. Renew Sustain Energy Rev 16(6):4316–4342CrossRefGoogle Scholar
  56. Suali E, Sarbatly R, Shaleh SRM (2012) Characterization of local microalga species toward biofuel production. International conference on applied energy, ICAE 2012, 5–8 Jul 2012, Suzhou, China. Paper ID: ICAE2012-10331Google Scholar
  57. Swingedouw D, Fichefet T, Huybrechts P, Goosse H, Driesschaert E, Loutre MF (2008) Antarctic ice sheet melting provides negative feedbacks on future climate warming. Geophys Res Lett 35:L17705. doi:10.1029/2008GL034410CrossRefGoogle Scholar
  58. Sydney EB, Sturm W, deCarvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR (2010) Potential of carbon dioxide fixation by industrial important microalgae. Bioresour Technol 101:5892–5896CrossRefGoogle Scholar
  59. Takahashi N, Furutaa Y, Fukunaga H, Takatsukaa T, Manob H, Fujioka Y (2011) Effects of membrane properties on CO2 recovery performance in a gas absorption membrane contactor. Energy Procedia 4:693–698CrossRefGoogle Scholar
  60. The Star Online (2010) Sea levels rising in the peninsula, says Kurup, News. Available online at http://www.thestar.com.my/services/printerfriendly.asp?file=/2010/7/23/nation/6722124.asp&sec=nation.Accessed 20 July 2010
  61. Vogt M, Goldschmidt R, Bathen D, Epp B, Fahlenkamp H (2011) Comparison of membrane contactor and structured packings for CO2 absorption. Energy Procedia 4:1471–1477CrossRefGoogle Scholar
  62. World Meteorological Organization (2008) WMO statement on the status of the global climate in 2008. Geneva 2, Switzerland, Dec 2008. p 16. Report No. 1039Google Scholar
  63. World Meteorological Organization (2011) WMO statement on the status of the global climate in 2011. Geneva 2, Switzerland, Dec 2011. p 16. Report No. 1039Google Scholar
  64. Yan S, Fang M-X, Zhang W-F, Wang S-Y, Xu Z-K, Luo Z-Y, Cen K-F (2007) Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process Technol 88:501–511CrossRefGoogle Scholar
  65. Yanchao L, Zhiwu H, Xianping Z, Fangqin L, Ji R (2012) Study on the gas–liquid two-phase flow two-phase flow characteristics of carbon dioxide removal by membrane method. Adv Mater Res 347–353:1797–1800Google Scholar
  66. Yeon S-H, Lee K-S, Sea B, Park Y-I, Lee K-H (2005) Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas. J Membr Sci 257:156–160CrossRefGoogle Scholar
  67. Yongmanltchal W, Ward OP (1992) Growth and eicosapentaenoic acid production by Phaeodactylum tricornutum in batch and continuous culture systems. J Am Oil Chem Soc 69(6):584–590CrossRefGoogle Scholar
  68. Yoo C, Jun S, Lee J, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74CrossRefGoogle Scholar
  69. Zhang K, Miyachi S, Kurano N (2001) Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation: effects of reactor dimensions, irradiation and cell concentration on the biomass productivity and irradiation utilization efficiency. Appl Microbiol Biotechnol 55:428–433CrossRefGoogle Scholar
  70. Zhang H-Y, Wang R, Liang DT, Tay JH (2008) Theoretical and experimental studies of membrane wetting in the membrane gas–liquid contacting process for CO2 absorption. J Membr Sci 308:162–170CrossRefGoogle Scholar
  71. Zijffers JWF, Salim S, Janssen M, Tramper J, Wijffels RH (2008) Capturing sunlight into a photobioreactor: ray tracing simulations of the propagation of light from capture to distribution into the reactor. Chem Eng J 145:316–327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rosalam Hj. Sarbatly
    • 1
  • Emma Suali
    • 1
  1. 1.School of Engineering and Information TechnologyUniversiti Malaysia Sabah, Jalan UMSKota KinabaluMalaysia

Personalised recommendations