Skip to main content

Stability Studies of Immobilized Burkholderia cepacia Lipase and Its Application in Biodiesel Production from Jatropha curcas Oil

  • Chapter
  • First Online:
Advances in Biofuels

Abstract

This chapter focuses mainly on biodiesel production from the “future green gold” namely Jatropha curcas. The importance of this plant as biodiesel ­feedstock, oil extraction methods from the seeds, and different routes of biodiesel production are discussed in the first part. Nowadays, immobilization of lipase has gained immense potential in the biofuel industry mainly to reduce the production costs and to make the method more economical. Different approaches of lipase immobilization are briefed in the second part. The final part of this chapter shows stability studies of Burkholderia cepacia lipase immobilized in hybrid matrix and its application and biodiesel optimization from crude J. curcas oil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla R, Chan ES, Ravindra P (2011) Biodiesel production from Jatropha curcas: a critical review. Crit Rev Biotechnol 31:53–64

    Article  Google Scholar 

  • Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R, Muys B (2008) Review Jatropha bio-diesel production and use. Biomass Bioenergy 32:1063–1084

    Article  Google Scholar 

  • Aderibigbe AO, Johnson C, Makkar HPS, Becker K, Foidl N (1997) Chemical composition and effect of heat on organic matter-and nitrogen-degradability and some antinutritional components of Jatropha meal. Anim Feed Sci Technol 67:223–243

    Article  Google Scholar 

  • Agarwal AK, Das LM (2001) Biodiesel development and characterization for use as a fuel in compression ignition engines. J Eng Gas Turb Power 123:440–447

    Article  Google Scholar 

  • Al-Zuhair S (2007) Production of biodiesel possibilities and challenges. Biofuels Bioprod Bioref 1:57–66

    Article  Google Scholar 

  • Andrade JD, Hlady V (1986) Protein adsorption and materials biocompatibility: a tutorial review and suggested hypotheses. Adv Polym Sci 79:1–63

    Article  Google Scholar 

  • Beerens P (2007) Screw-pressing of Jatropha seeds for fueling purposes in less developed countries. M.Sc. Dissertation, Eindhoven University of Technology

    Google Scholar 

  • Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99:1716–1721

    Article  Google Scholar 

  • Bonrath W, Karge R, Netscher T (2002) Lipase-catalyzed transformations as key-steps in the large-scale preparation of vitamins. J Mol Catal B Enzym 19:67–72

    Article  Google Scholar 

  • Cao L (2005) Immobilized enzymes: science or art? Curr Opin Chem Biol 9:217–226

    Article  Google Scholar 

  • Cao LQ, Langen VL, Sheldon RA (2003) Immobilized enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394

    Article  Google Scholar 

  • Casimir CA, Chang SW, Lee GC, Shaw JF (2007) Enzymatic approach to biodiesel production. J Agric Food Chem 55:8995–9005

    Article  Google Scholar 

  • Chen WH, Chen CH, Chang CMJ, Chiu YH, Hsiang D (2009) Supercritical carbon dioxide extraction of triglycerides from Jatropha curcas L. seeds. J Supercrit Fluids 51:174–180

    Article  Google Scholar 

  • Dehgan B, Webster GL (1979) Morphology and infrageneric relationships of the genus Jatropha (Euphorbiaceae). University of California Publications in Botany, Berkeley, CA

    Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Conversion Manage 50:14–34

    Article  Google Scholar 

  • Devanesan MG, Viruthagiri T, Sugumar N (2007) Transesterification of Jatropha oil using immobilized Pseudomonas fluorescens. Afr J Biotechnol 6:2497–2501

    Google Scholar 

  • Divakara BN, Upadhyaya HD, Wani SP, Laxmipathi CL (2010) Biology and genetic improvement of Jatropha curcas L. A review. Appl Energy 87:732–742

    Article  Google Scholar 

  • Eijick VJ, Romijin H (2008) Prospects of Jatropha biofuels in Tanzania: an analysis with Strategic Niche Management. Energy Policy 36:311–325

    Article  Google Scholar 

  • Forson FK, Oduro EK, Hammond DE (2004) Performance of Jatropha oil blends in a diesel engine. Renew Energy 29:1135–1145

    Article  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    Google Scholar 

  • Goodrum JW (2002) Volatility and boiling points of biodiesel from vegetable oils and tallow. Biomass Bioenergy 22:205–211

    Article  Google Scholar 

  • Gubitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol 67:73–82

    Article  Google Scholar 

  • Gui MM, Lee KT, Bhatia S (2008) Feasibility of edible oil vs. waste edible oil as biodiesel feedstock. Energy 33:1646–1653

    Article  Google Scholar 

  • Hsu AF, Jones KC, Foglia TA, Marmer WN (2004) Continuous production of ethyl esters of grease using an immobilized lipase. J Am Oil Chem Soc 81:749–752

    Article  Google Scholar 

  • Hung TC, Giridhar R, Chiou SH, Wu WT (2003) Binary immobilization of Candida rugosa lipase on chitosan. J Mol Catal B Enzym 26:69–78

    Article  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  Google Scholar 

  • Jain S, Sharma MP (2010) Prospects of biodiesel from Jatropha in India: a review. Renew Sustain Energy Rev 14:763–771

    Article  Google Scholar 

  • Jegannathan KR, Sariah A, Denis P, Chan ES, Ravindra P (2008) Production of biodiesel using immobilized lipase—a critical review. Crit Rev Biotechnol 28:253–264

    Article  Google Scholar 

  • Jegannathan KR, Chan ES, Ravindra P (2009) Physical and stability characteristics of Burkholderia cepacia lipase encapsulated in κ-carrageenan. J Mol Catal B Enzym 58:78–83

    Article  Google Scholar 

  • Karube I, Yugeta Y, Suzuki S (1977) Electric field control of lipase membrane activity. Biotechnol Bioeng 19:1493–1501

    Article  Google Scholar 

  • Knežević ZD, Šiler-Marinković S, Mojović LV (2004) Immobilized lipases as practical catalysts. Acta Periodica Technologica 35:151–164

    Google Scholar 

  • Koh MY, Mohd Ghazi TI (2011) A review of biodiesel production from Jatropha curcas L. oil. Renew Sustain Energy Rev 15:2240–2251

    Article  Google Scholar 

  • Kumari A, Mahapatra P, Garlapti VK, Banerjee R (2009) Enzymatic transesterification of Jatropha oil. Biotechnol Biofuels 2:1. doi: 10.1186/1754-6834-2-1

    Article  Google Scholar 

  • Lam MK, Tan KT, Lee KT, Mohamed AR (2009) Malaysian palm oil: surviving the food versus fuel dispute for a sustainable future. Renew Sustain Energy Rev 13:1456–1464

    Article  Google Scholar 

  • Linnaeus C (1753) Species plantarum. In: Jatropha, Impensis Laurentii Salvii, Stockholm, p 1006–1007

    Google Scholar 

  • Lu H, Liu Y, Zhou H, Yang Y, Chen M, Liang B (2009) Production of biodiesel from Jatropha curcas L. oil. Comput Chem Eng 33:1091–1096

    Article  Google Scholar 

  • Makkar HP, Becker K, Sporen F, Wink M (1997) Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas L. J Agric Food Chem 45:3152–3157

    Article  Google Scholar 

  • Modi MK, Reddy JRC, Rao BVSK, Prasad RBN (2006) Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Biotechnol Lett 28:1260–1264

    Article  Google Scholar 

  • Morin P, Hamad B, Sapaly G, Carneiro Rocha MG, Pries de Oliveira PG, Gonzalez WA, Andrade Sales E, Essayem N (2007) Transesterification of rapeseed oil with ethanol: I. Catalysis with homogeneous Keggin heteropolyacids. Appl Catal A Gen 330:69–76

    Article  Google Scholar 

  • Murugesan A, Umarani C, Chinnusamy TR, Krishnan M, Subramanian R, Neduzchezhain N (2009) Production and analysis of bio-diesel from non-edible oils— a review. Renew Sustain Energy Rev 13:825–834

    Article  Google Scholar 

  • Nelson LA, Foglia TA, Marner WN (1996) Lipase-catalyzed production of biodiesel. J Am Chem Oil Soc 73:1191–1195

    Article  Google Scholar 

  • Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777

    Article  Google Scholar 

  • Okahata Y, Hatano A, Ijiro K (1995) Enhancing enantioselectivity lipase via imprinting methods organic solvents of a lipid-coated for esterification. Tetrahedron Asymmetry 6:1311–1322

    Article  Google Scholar 

  • Otero C, Berrendero MA, Cardenas F, Alvarez E, Elson SW (2005) General characterization of non-commercial microbial lipases in hydrolytic and synthetic reactions. Appl Biochem Biotechnol 120:209–223

    Article  Google Scholar 

  • Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131

    Google Scholar 

  • Rabe’ ELM, Somers LMT, Goey LPH (2005) Jatropha oil in copression ignition engines—effects on the engine, environment and Tanzania as supplying country. M.Sc. Dissertation, Eindhoven University of Technology

    Google Scholar 

  • Rathore VG, Madras G (2007) Synthesis of biodiesel from edible and non-edible oils in supercritical alcohols and enzymatic synthesis in supercritical carbon dioxide. Fuel 86:2650–2659

    Article  Google Scholar 

  • Schultze-Motel J (1986) Rudolf Mansfelds Verzeichnis landwirtschaftlicher and gärtnerischer Kulturpflanzen (ohne Zierpflanzen). Akademie-Verlag, Berlin

    Google Scholar 

  • Seyhan F, Tijskens LMM, Evranuz O (2002) Modelling temperature and pH dependence of lipase and peroxidase activity in Turkish hazelnuts. J Food Eng 52:387–395

    Article  Google Scholar 

  • Shah S, Gupta MN (2007) Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem 42:409–414

    Article  Google Scholar 

  • Shah S, Sharma A, Gupta MN (2004a) Extraction of oil from Jatropha curcas L. seed kernels by enzyme assisted three phase partitioning. Ind Crops Prod 20:275–279

    Article  Google Scholar 

  • Shah S, Sharma S, Gupta MN (2004b) Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energy Fuels 18:154–159

    Article  Google Scholar 

  • Shah S, Sharma A, Gupta MN (2005) Extraction of oil from Jatropha curcas L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction. Bioresour Technol 96:121–123

    Article  Google Scholar 

  • Shanker C, Dhyani SK (2006) Insect pests of Jatropha curcas L. and potential for their management. Curr Sci 91:162–163

    Google Scholar 

  • Sharma YC, Singh B, Upadhyay SN (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87:2355–2373

    Article  Google Scholar 

  • Shuler ML, Kargi F (1992) Bioprocess engineering: basic concepts. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Singh SP, Singh D (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of biodiesel: a review. Renew Sustain Energy Rev 12:200–216

    Article  Google Scholar 

  • Su EZ, Xu WQ, Gao KL, Zheng YZ, Wei DZ (2007) Lipase-catalyzed in situ reactive extraction of oilseeds with short-chained alkyl acetates for fatty acid esters production. J Mol Catal B Enzym 48:28–32

    Article  Google Scholar 

  • Su E, You P, Wei D (2009) In situ lipase catalyzed reactive extraction of oil seeds with short chained dialkyl carbonates for biodiesel production. Bioresour Technol 100:5813–5817

    Article  Google Scholar 

  • Tamalampudi S, Talukder MRR, Hama S, Numata T, Kondo A, Fukuda H (2008) Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem Eng J 39:185–189

    Article  Google Scholar 

  • Tapanes NCO, Aranda DA, Mesquita Carneiro JW, Ceva Antunes OA (2008) Transesterification of Jatropha curcas oil glycerides: theoretical and experimental studies of biodiesel reaction. Fuel 87:2286–2295

    Article  Google Scholar 

  • Tewari DN (2007) Jatropha and biodiesel, 1st edn. Ocean Books Ltd., New Delhi

    Google Scholar 

  • Trevan MD (1988) Enzyme immobilization by entrapment new protein techniques new protein techniques. Humana Press, Clifton, NJ, 491–494

    Google Scholar 

  • Vulfson EN (1994) Industrial applications of lipases. In: Woolley P, Peterson SB (eds) Lipases: their structure, biochemistry and application. Cambridge University press, Cambridge, pp 271–288

    Google Scholar 

  • Winkler E, Gubitz GM, Foidl N, Staubmann R, Steiner W (1997) Use of enzymes for oil extraction from J. curcas seeds. In: Proceedings from the symposium “Jatropha 97,”Managua, Nicaragua, 23–27 February. Dbv-Verlag, Graz, Austria, p 184–189

    Google Scholar 

  • Wu JC, Wong YK, Chang KW, Tay CY, Chow Y (2007) Immobilization of Mucor javanicus lipase by entrapping in alginate-silica hybrid gel beads with simultaneous cross-linking with glutaraldehyde. Biocatal Biotransformation 25:459–463

    Article  Google Scholar 

  • Xavier MF, Hector RR, Hugo SG, Charles GH, Clyde HA (1990) Immobilized lipase reactors for modification of fats and oils—a review. J Am Oil Chem Soc 67:890–910

    Article  Google Scholar 

  • Yadav GD, Jadhav SR (2005) Synthesis of reusable lipases by immobilization on hexagonal mesoporous silica and encapsulation in calcium alginate: transesterification in non-aqueous medium. Microporous Mesoporous Mater 86:215–222

    Article  Google Scholar 

  • Yusuf NN, Kamarudin SK, Yaakub Z (2011) Overview on the current trends in biodiesel production. Energy Conversion Manage 52:2741–2751

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Ministry of Science, Technology and Innovation (MOSTI) for the financial support through FRGS Grant (FGRG0244-TK-1/2010).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abdulla, R., Pogaku, R. (2013). Stability Studies of Immobilized Burkholderia cepacia Lipase and Its Application in Biodiesel Production from Jatropha curcas Oil. In: Pogaku, R., Sarbatly, R. (eds) Advances in Biofuels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6249-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6249-1_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-6248-4

  • Online ISBN: 978-1-4614-6249-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics