Skip to main content

Dynamic Traffic Assignment: A Survey of Mathematical Models and Techniques

  • Chapter
  • First Online:
Advances in Dynamic Network Modeling in Complex Transportation Systems

Part of the book series: Complex Networks and Dynamic Systems ((CNDS,volume 2))

Abstract

This paper presents a survey of the mathematical methods used for modeling and solutions for the traffic assignment problem. It covers the static (steady-state) traffic assignment techniques as well as dynamic traffic assignment in lumped parameter and distributed parameter settings. Moreover, it also surveys simulation-based solutions. The paper shows the models for static assignment, variational inequality method, projection dynamics for dynamic travel routing, discrete time and continuous time dynamic traffic assignment, and macroscopic dynamic traffic assignment (DTA). The paper then presents the macroscopic DTA in terms of the Wardrop principle and derives a partial differential equation for experienced travel time function that can be integrated with the macroscopic DTA framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Avriel M. Nonlinear programming: analysis and methods. Mineola, NY: Dover Publications; 2003.

    Google Scholar 

  • Bazaraa MS, Sherali HD, Shetty CM. Nonlinear programming: theory and algorithms. New York: Wiley; 2006.

    Book  Google Scholar 

  • Beckmann MJ, McGuire CB, Winsten CB. T Studies in the economics of transportation, Yale University Press, 1956.

    Google Scholar 

  • Ben-Akiva M, Bierlaire M, Koutsopoulos H, Mishalani R. Dynamit: a simulation-based system for traffic prediction. In: DACCORS short term forecasting workshop, The Netherlands, Citeseer; 1998.

    Google Scholar 

  • Ben-Akiva ME, Lerman SR. Discrete choice analysis: theory and application to travel demand. MIT Press series in transportation studies. Cambridge, MA: MIT Press; 1985.

    Google Scholar 

  • Boyce D, Lee D, Ran B. Analytical models of the dynamic traffic assignment problem. Network Spatial Econ. 2001;1:377–90.

    Article  Google Scholar 

  • Bressan A. Hyperbolic systems of conservation laws: the one-dimensional cauchy problem. Oxford: Oxford University Press; 2005.

    Google Scholar 

  • Buisson C, Lebacque JP, Lesort JB. Strada, a discretized macroscopic model of vehicular traffic flow in complex networks based on the godunov scheme. In: CESA’96 IMACS multiconference: computational engineering in systems applications; 1996. p. 976–81.

    Google Scholar 

  • Carey M. Nonconvexity of the dynamic traffic assignment problem. Transport Res Part B 1992;26 (2):127–33.

    Article  Google Scholar 

  • Chen HK. Dynamic travel choice models: a variational inequality approach. Berlin: Springer; 1999.

    Book  Google Scholar 

  • Chiu YC, Bottom J, Mahut M, Paz A, Balakrishna R, Waller T, et al. A primer for dynamic traffic assignment. Washington, DC: Transportation Research Board; http://www.nextrans.org/ADB30/index.php. Accessed 6 Jan 2013.

  • Coclite GM, Piccoli B. Traffic flow on a road network. Arxiv preprint math/0202146 (2002).

    Google Scholar 

  • Dafermos S. Traffic equilibrium and variational inequalities. Transport Sci. 1980;14(1):42.

    Article  Google Scholar 

  • Dafermos S. An iterative scheme for variational inequalities. Math Program. 1983;26(1):40–7.

    Article  Google Scholar 

  • Dafermos S. Sensitivity analysis in variational inequalities. Math Oper Res. 1988;13:421–34.

    Article  Google Scholar 

  • Dafermos SC, Sparrow FT. The traffic assignment problem for a general network. J Res Natl Bur Stand Ser B 1969a;73(2):91–118.

    Google Scholar 

  • Dafermos SC, Sparrow FT. The traffic assignment problem for a general network. J Res Natl Bur Stand. 1969b;73B:91–118.

    Google Scholar 

  • Dupuis P, Nagurney A. Dynamical systems and variational inequalities. Ann Oper Res. 1993;44(1):7–42.

    Article  Google Scholar 

  • Facchinei F, Pang JS. Finite-dimensional variational inequalities and complementarity problems. vol. 1. New York: Springer; 2003.

    Google Scholar 

  • Friesz TL. Special issue on dynamic traffic assignment, Part I: networks and spatial economics. vol. 1. Springer; New York 2001.

    Google Scholar 

  • Friesz TL, Bernstein D, Smith TE, Tobin RL, Wie BW. A variational inequality formulation of the dynamic network user equilibrium problem. Oper Res. 1993;41(1):179–91.

    Article  Google Scholar 

  • Friesz TL, Luque J, Tobin RL, Wie BW. Dynamic network traffic assignment considered as a continuous time optimal control problem. Oper Res. 1989;37(6):893–901.

    Article  Google Scholar 

  • Garavello M, Piccoli B. Source-destination flow on a road network. Comm Math Sci. 2005;3(3): 261–83.

    Google Scholar 

  • Garavello M,Piccoli B. Traffic flow on networks. Springfield, MO: American Institute of Mathematical Sciences; 2006.

    Google Scholar 

  • Gazis DC. Traffic science. New York, NY: Wiley-Interscience; 1974.

    Google Scholar 

  • Greenshields BD. A study in highway capacity. Highway Res Board 1935;14:458.

    Google Scholar 

  • Gugat M, Herty M, Klar A, Leugering G. Optimal control for traffic flow networks. J Optim Theor Appl. 2005;126(3):589–616.

    Article  Google Scholar 

  • Hitchcock FL. The distribution of a product from several sources to numerous localities. J Math Phys. 1941;20:224–23.

    Google Scholar 

  • Holden H, Risebro NH. A mathematical model of traffic flow on a network of unidirectional roads. SIAM J Math Anal. 1995;26:999.

    Article  Google Scholar 

  • Kachroo P, Özbay K. Solution to the user equilibrium dynamic traffic routing problem using feedback linearization. Transport Res Part B 1998;32(5):343–360.

    Article  Google Scholar 

  • Kachroo P, Ozbay K. Feedback control theory for dynamic traffic assignment. London: Springer; 1999.

    Book  Google Scholar 

  • Kachroo P, Özbay K. Feedback ramp metering in intelligent transportation systems. Springer; New York 2003.

    Google Scholar 

  • Kachroo P, Özbay K. Feedback control solutions to network level user-equilibrium real-time dynamic traffic assignment problems. Network Spatial Econ. 2005;5(3):243–60.

    Article  Google Scholar 

  • Kachroo P, Özbay K. Modeling of network level system-optimal real-time dynamic traffic routing problem using nonlinear h-∞ feedback control theoretic approach. J Intell Transport Syst. 2006;10(4):159–71.

    Article  Google Scholar 

  • Kinderlehrer D, Stampacchia G. An introduction to variational inequalities and their applications. vol. 31. Philadelphia: Society for Industrial Mathematics; 2000.

    Book  Google Scholar 

  • Lebacque JP. The godunov scheme and what it means for first order traffic flow models. In: Internaional symposium on transportation and traffic theory; 1996. p. 647–77.

    Google Scholar 

  • Lebacque JP, Khoshyaran MM. First order macroscopic traffic flow models for networks in the context of dynamic assignment. Transport Plann. 2004;64:119–40.

    Article  Google Scholar 

  • LeVeque RJ. Numerical methods for conservation laws. Basel: Birkhäuser; 1994.

    Google Scholar 

  • Lighthill MJ, Whitham GB. On kinematic waves. i:flow movement in long rivers. ii:a theory of traffic on long crowded roods. Proc R Soc. 1955;A229:281–345.

    Google Scholar 

  • Mahmassani HS, Hawas YE, Abdelghany K, Abdelfatah A, Chiu YC, Kang Y, et al. Dynasmart-x; volume ii: Analytical and algorithmic aspects. Technical Report ST067-85-Volume II, Center for Transportation Research, The University of Texas at Austin; 1998.

    Google Scholar 

  • Mangasarian OL. Nonlinear programming. vol. 10. Philadelphia: Society for Industrial Mathematics; 1994.

    Book  Google Scholar 

  • Merchant DK, Nemhauser GL. A model and an algorithm for the dynamic traffic assignment problems. Transport Sci. 1978a;12(3):183–99.

    Article  Google Scholar 

  • Merchant DK, Nemhauser GL. Optimality conditions for a dynamic traffic assignment model. Transport Sci. 1978b;12(3):183–99.

    Article  Google Scholar 

  • Nagurney A, Zhang D. Projected dynamical systems and variational inequalities with applications. vol. 2. Boston: Kluwer Academic Publishers; 1996.

    Book  Google Scholar 

  • Nagurney A, Zhang D. Projected dynamical systems in the formulation, stability analysis, and computation of fixed-demand traffic network equilibria. Transport Sci. 1997;31(2):147–58.

    Article  Google Scholar 

  • Nugurney A. Sustainable transportation networks. Northampton, MA: Edward Elgar Publication; 2000.

    Google Scholar 

  • Peeta S, Ziliaskopoulos AK. Foundations of dynamic traffic assignment: the past, the present and the future. Network Spatial Econ. 2001;1(3/4):233–65.

    Article  Google Scholar 

  • Potts RB, Oliver RM. Flows in transportation networks. Mathematics in science and engineering. New York: Academic Press; 1972.

    Google Scholar 

  • Ran B, Boyce DE. Modeling dynamic transportation networks: an intelligent transportation system oriented approach: with 51 figures. New York: Springer; 1996.

    Book  Google Scholar 

  • Richards PI. Shockwaves on the highway. Oper Res. 1956;4:42–51.

    Article  Google Scholar 

  • Sheffi Y. Urban transportation networks: equilibrium analysis with mathematical programming methods. Englewood Cliffs, NJ: Prentice-Hall; 1985.

    Google Scholar 

  • Skorokhod AV. Stochastic equations for diffusion processes in a bounded region. Theor Probab Appl. 1961;6:264.

    Article  Google Scholar 

  • Stouffer SA. Intervening opportunities: A theory relating mobility and distance. Am Socio Rev. 1940;5:845–67.

    Article  Google Scholar 

  • Strub I, Bayen A. Weak formulation of boundary conditions for scalar conservation laws: an application to highway modeling. Int J Robust Nonlinear Control 2006;16:733–48.

    Article  Google Scholar 

  • Voorhees AM. A general theory of traffic movement. In: Proceedings, Institute of Traffic Engineers; 1956.

    Google Scholar 

  • Wardrop JG. Some theoretical aspects of road traffic research. In: Proceedings, Institute of Civil Engineers, PART II, 1; 1952. p. 325–78.

    Google Scholar 

  • Wilson AG. A statistical theory of spatial distribution models. Transport Res. 1967;1:253–69.

    Article  Google Scholar 

  • Zhang D, Nagurney A. On the stability of projected dynamical systems. J Optim Theor Appl. 1995;85(1):97–124.

    Article  Google Scholar 

  • Zhang D, Nagurney A. On the local and global stability of a travel route choice adjustment process. Transport Res Part B 1996;30(4):245–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushkin Kachroo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kachroo, P., Shlayan, N. (2013). Dynamic Traffic Assignment: A Survey of Mathematical Models and Techniques. In: Ukkusuri, S., Ozbay, K. (eds) Advances in Dynamic Network Modeling in Complex Transportation Systems. Complex Networks and Dynamic Systems, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6243-9_1

Download citation

Publish with us

Policies and ethics