Engineering Risk and Finance pp 333-374 | Cite as

# Uncertainty Economics

## Abstract

This chapter seeks to reconcile fundamental financial approaches with uncertainty. Uncertainty is defined by the unknown rather than the predictable, counted and accounted for. While financial decisions are reached based on what we know, what we can predict and what we can presume based on experience and the rationalities that financial agents assume. The uncertainty we consider is defined in a limited sense, namely, a partial knowledge of future state preferences and their quantification. There are many approaches to do so such as negligence of the unknown, human intentional rationalities as well behavioral and psychological approaches to confront the unknown. This chapter focuses its attention on the use of entropy for “non-extensive systems” (a term commonly used in physics with its parallel in finance, which we define as “incompleteness”) based on a parametric generalization of the Boltzmann–Gibbs entropy (which assumes extensive systems). Optimization of the Tsallis parametric entropy for non-extensive systems is then used to derive implied power laws and standardized probability distributions that are both asymmetric and have fat tails. This approach provides a parametric definition of the “missing”, namely the tail probabilities not accounted for in selecting an asset future price distribution.

Subsequently, the chapter outlines a number of approaches to robust decision models and ex-post risk management. It concludes with a discussion of risk externalities in financial and environmental regulation and draws a parallel between “banks’ risks” for which they do not assume responsibility for and pollution risks of firms and consumers who consume and who do not assume their pollution consequences. Both cases, call for an efficient regulation and statistical controls which is the topic of Chap. 11.

### Keywords

Sugar Burning Entropy Migration Dioxide### References

- Abdellaoui, M., & Munier, B. (1997). Experimental determination of preferences under risk: The case of very low probability radiation.
*Ciencia and Tecnologia dos Materiais, 9*, 25–31.Google Scholar - Abdellaoui, M., & Munier, B. (1999). How consistent are probability tradeoffs in individual preferences under risk? In M. J. Machina & B. Munier (Eds.),
*Beliefs, interactions and preferences in decision making*(pp. 285–295). Dordrecht/Boston: Kluwer Academic Publishers.Google Scholar - Abe, S. (1997).
*Physics Letters A, 224*, 326.CrossRefGoogle Scholar - Ahlbrecht, M., & Weber, M. (1997). Preference for gradual resolution of uncertainty.
*Theory and Decision, 43*, 167–185.CrossRefGoogle Scholar - Akturk, E., Bagci, G. B., & Sever, R. (2007). Is Sharma-Mittal entropy really a step beyond Tsallis and Renyi entropies? asXiv:cond-mat/07032771v1, gbb0002@unt.edu.Google Scholar
- Allais, M. (1953). Le comportement de l'homme rationnel devant le risque, Critique des postulats et axiomes de l'ecole Americaine.
*Econometrica, 21*, 503–546.CrossRefGoogle Scholar - Amato, J. D., & Remolona, E. M. (2005).
*The pricing of unexpected credit losses*. BIS, Working Paper No. 190.Google Scholar - Ang, B. W. (1999). Is the energy intensity a less useful indicator than the carbon factor in the study of climate change?
*Energy Policy, 27*, 943–946.CrossRefGoogle Scholar - Ang, B. W., & Pandiyan, G. (1997). Decomposition of energy-induced CO2 emissions in manufacturing.
*Energy Economics, 19*, 363–374.CrossRefGoogle Scholar - Arrow, K. J. (1982). Risk perception in psychology and in economics.
*Economics Inquiry, 20*, 1–9.CrossRefGoogle Scholar - Arrow, K. J., Colombatto, E., Perlman, M., & Schmidt, C. (Eds.). (1996).
*The rational foundations of economic behavior*. London: Macmillan.Google Scholar - Aschauer, D. A. (1989a). Is public expenditure productive.
*Journal of Monetary Economics, 23*, 177–200.CrossRefGoogle Scholar - Aschauer, D. A. (1989b). Does public capital crowd out private capital.
*Journal of Monetary Economics, 24*, 171–188.CrossRefGoogle Scholar - Batten, D. F., & Karlsson, C. (Eds.). (1996).
*Infrastructure and the complexity of economic development*(Advances in spatial science, pp. 49–60). Heidelberg and New York: Springer.CrossRefGoogle Scholar - Berndt, E. R., & Harrison, B. (1991). Measuring the contribution of public infrastructure in Sweden,
*NBER*WP n° 3842.Google Scholar - Borges, E. P., & Roditi, I. (1998). A family of nonextensive entropies.
*Physics Letters A, 246*, 399–402.CrossRefGoogle Scholar - Borland, L., & Bouchaud, J. P. (2004). A non Gaussian option pricing model with skew.
*Quantitative Finance, 4*(5), 499–514.CrossRefGoogle Scholar - Brannlund, R., Ghalwash, T., & Nordstrom, J. (2006). Increased energy efficiency and the rebound effect: Effects on consumption and emissions,
*Energy Economics*.Google Scholar - Brock, W. (1986). Distinguishing random and deterministic systems.
*Journal of Economic Theory, 40*(1), 168–195.CrossRefGoogle Scholar - Brock, W. A., & Dechert, W. D. (1988). Theorems on distinguishing deterministic systems. In W. Barnett, E. Berndt, & H. White (Eds.),
*Dynamic econometric modeling*(pp. 247–265). Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Brody, D. C., Buckley, I. R. C., & Constantinou, I. C. (2007). Option price calibration from Renyi entropy.
*Physics Letters A, 366*, 298–3007.CrossRefGoogle Scholar - Coase, R. H. (1937). The nature of the firm.
*Economica, 4*(16), 386–405.CrossRefGoogle Scholar - Coase, R. H. (1960). The problem of social cost.
*Journal of Law and Economics, 3*(2), 1–44.CrossRefGoogle Scholar - Debreu, G. (1953).
*Une economie de l’incertain*. Working Paper, Electricite de France, Paris, France (Published in 1960 in*Economie Appliquee*13, no.1, pp. 111–116).Google Scholar - DeCanio, S. J. (1997). Economic modeling and the false tradeoff between environmental protection and economic growth.
*Contemporary Economic Policy, 15*, 10–27.CrossRefGoogle Scholar - Dembo, R. S. (1989). Scenario optimization. Algorithmics Inc. Research Paper 89.01.Google Scholar
- Dembo, R. S. (1993). Scenario immunization. In S. A. Zenios (Ed.),
*Financial optimization*. London: Cambridge University Press.Google Scholar - Dempster, M. A. H., Medova, E. A., & Yang, S. W. (2007). Empirical copulas for CDO tranche pricing using relative entropy, Center for Financial Research, Judge Business School, University of Cambridge, UKGoogle Scholar
- Dyer, J. S., & Jia, J. (1997). Relative risk-value model.
*European Journal of Operational Research, 103*, 170–185.CrossRefGoogle Scholar - Economides, N. (1996). The Economics of Networks,
*International Journal of Industrial Organization*, vol. 14, No 2.Google Scholar - Eeckhoudt, L., Gollier, C., & Schlesinger, H. (1996). Changes in background risk and risk taking behavior.
*Econometrica, 64*, 683–689.CrossRefGoogle Scholar - Eeckoudt, L., & Kimball, M. (1991). Background risk prudence and the demand for insurance. In G. Dionne (Ed.),
*Contributions to insurance economics*. Boston: Kluwer Academic.Google Scholar - Ellsberg, D. (1961).
*Risk, ambiguity and the savage axioms*(pp. 643–669). 75: Quarterly Journal of Economics.Google Scholar - Fraundorf, P. (2007). Thermal roots of correlation-based complexity.
*Complexity, 13*(3), 18–26.CrossRefGoogle Scholar - Friedman, M. (1976).
*Price Theory*, Aldine de Gruyler.Google Scholar - Friedman, M., & Savage, L. J. (1948). The utility analysis of choices involving risk.
*Journal of Political Economy, 56*, 279–304.CrossRefGoogle Scholar - Friedman, M., & Savage, L. J. (1952). The expected utility hypothesis and the measurability of utility.
*Journal of Political Economy, 60*, 463–474.CrossRefGoogle Scholar - Gibbs, J. W. (1961).
*The scientific papers of J.W. Gibbs*(Vol. 1). New York: Dover Publications.Google Scholar - Gilboa, I., & Schmeidler, D. (1995). Case-based decision theory.
*Quarterly Journal of Economics, 99*, Août 1995. p. 605-639.Google Scholar - Gollier, C., & Pratt, J. W. (1996). Risk vulnerability and the tempering effect of background risk.
*Econometrica, 64*, 1109–1123.CrossRefGoogle Scholar - Good, I. J. (1965).
*The estimation of probabilities: An essay on modern Bayesian methods*(Research Monograph no 30). Cambridge, MA: MIT Press.Google Scholar - Good, I. J. (1968). Utility of a distribution.
*Nature, 219*, 139.CrossRefGoogle Scholar - Gramlich, E. M. (1994). Infrastructure: A review essay.
*Journal of Economic Literature, 32*, 1176–1196 (see important list of references at the end of the paper).Google Scholar - Granovskii, A., Dincer, I., & Rosen, M. A. (2006). Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles.
*Journal of Power Sources, 157*(1), 411–421.CrossRefGoogle Scholar - Greaker, M. (2006). Spillovers in the development of new pollution abatement technology: A new look at the Porter-hypothesis.
*Journal of Environmental Economics and Management, 52*, 411–420.CrossRefGoogle Scholar - Greening, L. A., Greene, D. L., & Difiglio, C. (2000). Energy efficiency and consumption—The rebound effect—A survey.
*Energy Policy, 28*, 389–401.CrossRefGoogle Scholar - Jackson, F. H. (1909). Mess. Math. 38, 1909, 57,
*Quarterly Journal of Pure and Applied Mathematics*,*41*, 193.Google Scholar - Jia, J., & Dyer, J. S. (1996). A standard measure of risk and risk-value models.
*Management Science, 42*(12), 1691–1705.CrossRefGoogle Scholar - Jia, J., Dyer, J. S., & Butler, J. C. (2001). Generalized disappointment models.
*Journal of Risk and Uncertainty, 22*(1), 59–78.CrossRefGoogle Scholar - Kahneman, D., Tversky, A. (1979). Prospect theory: An analysis of decision under risk,
*Econometrica*, March, pp. 263–291.Google Scholar - Kapur, J. N., & Kesavan, H. K. (1992).
*Entropy optimization principles with applications*. San Diego, CA: Academic.Google Scholar - Katz, M., & Shapiro, C. (1985). Network externalities, competition, and compatibility.
*American Economic Review, 75*(3), 424–440.Google Scholar - Kindleberger, C. (1978).
*Manias, panics, and crashes: a history of financial crises*, Basic BooksGoogle Scholar - Knight, F. (1921).
*Risk, uncertainty and profits*. Boston, MA: Houghton, Mifflin & Co.Google Scholar - Kullback, S. (1959).
*Information theory and statistics*. New York: Wiley.Google Scholar - Kullback, S. (1987). The Kullback-Leibler distance.
*The American Statistician, 41*, 340–341.Google Scholar - Kullback, S., & Leibler, R. A. (1951). On Information and sufficiency.
*Annals of Mathematical Statistics, 22*(1), 79–86. doi: 10.1214/aoms/1177729694 DOI:10.1214%2Faoms%2F1177729694.MR39968.CrossRefGoogle Scholar - Laffont, J. J. (1989).
*The economics of uncertainty and information*. Cambridge, MA: MIT Press.Google Scholar - Laffont, J. J. (1995). Regulation, moral hazard and insurance of environmental risks.
*Journal of Public Economics, 58*, 319–336.CrossRefGoogle Scholar - Langlois, N., & Cosgel, M. M. (1993). Frank Knight on risk, uncertainty and the firm: A new reinterpretations.
*Economic Inquiry, 31*(3), 456–465.CrossRefGoogle Scholar - Leland, H., & Pyle, D. (1977). Information asymmetries, financial structure and financial intermediation.
*Journal of Finance, 32*, 371–387.CrossRefGoogle Scholar - Leroy, S. F., & Singell, L. D., Jr. (1987). Knight on risk and uncertainty.
*Journal of Political Economy, 95*(21), 394–406.CrossRefGoogle Scholar - Liebowitz, S., & Margolis, S. (1994). Network externality: An uncommon tragedy.
*Journal of Economic Perspectives, 8*(2), 133–150.CrossRefGoogle Scholar - Loomes, G., & Sugden, R. (1982). Regret theory: An alternative to rational choice under uncertainty.
*The Economic Journal, 92*, 805–824.CrossRefGoogle Scholar - Loomes, G., & Sugden, R. (1987). Some implications of a more general form of regret theory.
*Journal of Economic Theory, 41*, 270–287.CrossRefGoogle Scholar - Lorenz, E. (1966). Large-scale motions of the atmosphere: Circulation. In P. M. Hurley (Ed.),
*Advances in earth science*. Cambridge, MA: MIT Press.Google Scholar - Machina, M. J. (1982). Expected utility analysis without the independence axiom.
*Econometrica, 50*, 277–323.CrossRefGoogle Scholar - Machina, M. J., & Munier, B. (Eds.). (1999).
*Beliefs, interactions and preferences in decision making*. Boston: Kluwer Academic.Google Scholar - Magill, M., & Quinzii, M. (1996).
*Theory of incomplete markets*. Cambridge, MA: MIT Press.Google Scholar - Mandelbrot, B. (1997). Three fractal models in finance: Discontinuity, concentration, risk.
*Economic Notes, 26*, 171–212.Google Scholar - Mandelbrot, B., & Wallis, J. (1968). Noah, Joseph and operational hydrology.
*Water Resources Research, 4*, 909–918.CrossRefGoogle Scholar - May, R. (1974). Biological populations with non-overlapping generations: Stable points, stable cycles, and chaos.
*Science, 186*, 645–647.CrossRefGoogle Scholar - Morrison, C., & Schwartz, A. (1996). State infrastructure and productive performance.
*American Economic Review, 86*, 1095–1111.Google Scholar - Mulvey, J. M., Vanderbei, R.J., & Zenios, S.A. (1991).
*Robust optimization of large scale systems*. Report SOR 13, Princeton University.Google Scholar - Munier, B. (1986). Complexité et Décision stratégique dans l'Incertain : Que peut-on retenir de la Théorie?. In: Boiteux, M., Th. de Montbrial and B. Munier, eds., Marchés, Capital et Incertitude, Paris, Economica.Google Scholar
- Munier, B. (1991). Market uncertainty and the process of belief formation.
*Journal of Risk and Uncertainty, 4*, 233–250.CrossRefGoogle Scholar - Munier, B. (1995). From instrumental to cognitive rationality: Contributions of the last decade to risk modeling.
*Revue d'Economie Politique, 105*, 5–70 (French, with abstract in English).Google Scholar - Munier, B. (Ed.). (2012).
*Global uncertainty and the volatility of agricultural commodities*. Amsterdam, The Netherlands: IOS Press.Google Scholar - Munier, B., Selten, R., et al. (1999). Bounded rationality modeling.
*Marketing Letters, 10*(3), 233–248.CrossRefGoogle Scholar - Munnell, A. H. (1992). Infrastructure investment and economic growth.
*Journal of Economic Perspectives, 6*, 189–198.CrossRefGoogle Scholar - Nau, R. (2011). Risk, ambiguity and state-preference theory.
*Economic Theory, 48*(2–3), 437–467.CrossRefGoogle Scholar - Naudts, J. (2007).
*Generalized thermostatistics*. Belgium: University of Antwerpen.Google Scholar - Nijkamp, P., & Blaas, E. (1993).
*Impact assessment and evaluation in transportation planning*. Amsterdam: Kluwer Academic.Google Scholar - Peter, E. E. (1995).
*Chaos and order in capital markets*. New York: Wiley.Google Scholar - Rabin, M. (1998). Psychology and economics.
*Journal of Economic Literature, 36*, 11–46.Google Scholar - Riordan, M. (1984). Uncertainty, asymmetric information and bilateral contracts.
*Review of Economic Studies, 51*, 83–93.CrossRefGoogle Scholar - Rockafellar, R. T., & Wets, R. J.-B. (1992). A dual strategy for the implementation of the aggregation principle in decision making under uncertainty.
*Applied Stochastic Models and Data Analysis, 8*, 245–255.CrossRefGoogle Scholar - Rubinstein, A. (1998).
*Modeling bounded rationality*. Cambridge, MA: MIT Press.Google Scholar - Samuelson, P. A. (1963). Risk and uncertainty: A fallacy of large numbers.
*Scientia, 98*, 108–163.Google Scholar - Samuelson, P. A. (1965). Proof that properly anticipated prices fluctuate randomly.
*Industrial Management Review, 6*, 41–49.Google Scholar - Sanchez-Robles, B. (1998a). The Role of Infrastructure Investment in Development: Some Macroeconomic Considerations International-Journal-of-Transport-Economics; 25(2), June, pages 113-36. http://wwwdte.spol.uniroma1.it/trasporti/journal.html
- Sanchez-Robles, B. (1998b). Infrastructure investment and growth: Some empirical evidence.
*Contemporary Economic Policy, 16*(1), 98–108.CrossRefGoogle Scholar - Sato, A.-H. (2010). q-Gaussian distributions and multiplicative stochastic processes for analysis of multiple financial time series, Mathematical Analysis of Generalized Entropies and their Applications,, Journal of Physics, Conference Series 201, 012008Google Scholar
- Simon, H. A. (1979).
*Models of man*. New Haven, CT: Yale University Press.Google Scholar - Simon, H. A. (1982).
*Models of bounded rationality*(Vol. 2). Cambridge, MA: MIT Press.Google Scholar - Stanley, M. H. R., Amaral, L. A. N., Bulkdyrev, S. V., Havlin, S. V., Leschron, H., Mass, P., Salinger, M. A., & Stanley, H. E. (1996).
*Nature, 397*, 804.CrossRefGoogle Scholar - Taleb, N. N. (2007).
*The Black Swan: The impact of the highly improbable*. New York: Random House.Google Scholar - Taleb, N. N. (2008). The fourth quadrant: A map of the limits of statistics.
*Edge*, http://www.edge.org/3rd_culture/taleb08/taleb08_index.html. - Taleb, N. N. (2009). Errors, robustness, and the fourth quadrant.
*International Journal of Forecasting, 25*(4), 744–759.CrossRefGoogle Scholar - Taleb, N. N., & Tapiero, C.S. (2010). Risk Externalities and Too Big to Fail, Physica A: Statistical Mechanics and Applications 2010Google Scholar
- Tapiero, C. (1995a). Complexity and industrial systems. Special Issue Editor,
*RAIRO.*Google Scholar - Tapiero, C. S. (1995b). Acceptance sampling in a producer-supplier conflicting environment: Risk neutral case.
*Applied Stochastic Models and Data Analysis, 11*, 3–12.CrossRefGoogle Scholar - Tapiero, C. S. (2005a).
*Risk management, encyclopedia on actuarial and risk management*. New York and London: Wiley.Google Scholar - Tapiero, O. (2012). Implied Risk neutral Distribution: The Non Extensive Entropy Approach, Ph.D Dissertation, Bar Ilan University, Israel.Google Scholar
- Thaler, R. H., et al. (1997). The effect of myopia and loss aversion on risk taking: An experimental test.
*Quarterly Journal of Economics, 112*, 647–661.CrossRefGoogle Scholar - Tversky, A., & Kahneman, D. (1992). Advances is prospect theory: Cumulative representation of uncertainty.
*Journal of Risk and Uncertainty, 5*, 297–323.CrossRefGoogle Scholar - Wakker, P. P. (1994). Separating marginal utility and probabilistic risk aversion.
*Theory and Decision, 36*, 1–44.CrossRefGoogle Scholar - Wakker, P. P. (2001). On the composition of risk preference and belief.
*Psychological Review, 111*, 236–241.CrossRefGoogle Scholar - Wakker, P. P. (2010).
*Prospect theory for risk and ambiguity*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Wakker, P., & Tversky, A. (1993). An axiomatization of cumulative prospect theory.
*Journal of Risk and Uncertainty, 7*, 147–176.CrossRefGoogle Scholar - Weston, J. F. The profit concept and theory: A restatement.
*Journal of Political Economy*,*62*((2), 152–170.Google Scholar - Xepapadeas, A. P. (1994). Controlling environmental externalities: Observability and optimal policy rules. In C. Dosi & T. Tomasi (Eds.),
*Nonpoint source pollution regulation: Issues and analysis*. Dordrecht: Kluwer Academic.Google Scholar - Xepapadeas, A. P. (1995). Observability and choice of instrument mix in the control of externalities.
*Journal of Public Economics, 56*, 485–498.CrossRefGoogle Scholar - Renyi, A. (1961). On measures of entropy and information.
*In Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability*; Statistical Laboratory of the University of California, Berkeley, CA, USA, 20 June–30 June, 1960; University of California Press: Berkeley, California, 1961; Volume 1, pp. 547–561.Google Scholar - Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics.
*Journal of Statistical Physics, 52*, 479–488.CrossRefGoogle Scholar