Skip to main content

YAP and p73: A Matter of Mutual Specificity in Tumor Suppression

  • Chapter
  • First Online:
The Hippo Signaling Pathway and Cancer

Abstract

YAP and p73 proteins are key nodes of two distinct tumor suppressor pathways. The HIPPO tumor suppressor pathway to which YAP belongs is the most recent identified in the cancer arena, while that of the p53 family including p73 is the most well studied and characterized. Often in response to anticancer treatment, distinct tumor suppressor pathways can be triggered and cross talk each other. This is well represented by the growing experimental evidence linking HIPPO and p53 family tumor suppressor pathways. Here we mainly focus on the physical and functional interaction between YAP and p73 proteins, their role in drug-induced apoptosis and their implications in tumor suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, et al. A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell. 2009;137:87–98.

    Article  PubMed  CAS  Google Scholar 

  • Agami R, Blandino G, Oren M, Shaul Y. Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature. 1999;399:809–13.

    Article  PubMed  CAS  Google Scholar 

  • Alexander K, Yang HS, Hinds PW. pRb inactivation in senescent cells leads to an E2F-dependent apoptosis requiring p73. Mol Cancer Res. 2003;1:716–28.

    PubMed  CAS  Google Scholar 

  • Allart S, Martin H, Detraves C, Terrasson J, Caput D, Davrinche C. Human cytomegalovirus induces drug resistance and alteration of programmed cell death by accumulation of deltaN-p73alpha. J Biol Chem. 2002;277:29063–8.

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Totty NF, Irwin MS, Sudol M, Downward J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell. 2003;11:11–23.

    Article  PubMed  CAS  Google Scholar 

  • Becker K, Pancoska P, Concin N, Vanden Heuvel K, Slade N, Fischer M, et al. Patterns of p73 N-terminal isoform expression and p53 status have prognostic value in gynecological cancers. Int J Oncol. 2006;29:889–902.

    PubMed  CAS  Google Scholar 

  • Bergamaschi D, Samuels Y, O’Neil NJ, Trigiante G, Crook T, Hsieh JK, et al. iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat Genet. 2003;33:162–7.

    Article  PubMed  CAS  Google Scholar 

  • Bergamaschi D, Samuels Y, Jin B, Duraisingham S, Crook T, Lu X. ASPP1 and ASPP2: common activators of p53 family members. Mol Cell Biol. 2004;24:1341–50.

    Article  PubMed  CAS  Google Scholar 

  • Bernassola F, Salomoni P, Oberst A, Di Como CJ, Pagano M, Melino G, et al. Ubiquitin-dependent degradation of p73 is inhibited by PML. J Exp Med. 2004;199:1545–57.

    Article  PubMed  CAS  Google Scholar 

  • Blandino G, Dobbelstein M. p73 and p63: why do we still need them? Cell Cycle. 2004;3:886–94.

    Article  PubMed  CAS  Google Scholar 

  • Bork P, Sudol M. The WW domain: a signalling site in dystrophin? Trends Biochem Sci. 1994;19:531–3.

    Article  PubMed  CAS  Google Scholar 

  • Bozzetti C, Nizzoli R, Musolino A, Martella EM, Crafa P, Lagrasta CA, Camisa, et al. p73 and p53 pathway in human breast cancers. J Clin Oncol. 2007;25:1451–3; author reply 1453–4.

    Google Scholar 

  • Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9:701–13.

    PubMed  CAS  Google Scholar 

  • Cam H, Griesmann H, Beitzinger M, Hofmann L, Beinoraviciute-Kellner R, Sauer M, et al. p53 family members in myogenic differentiation and rhabdomyosarcoma development. Cancer Cell. 2006;10:281–93.

    Article  PubMed  CAS  Google Scholar 

  • Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 2007;17:2054–60.

    Article  PubMed  CAS  Google Scholar 

  • Casciano I, Mazzocco K, Boni L, Pagnan G, Banelli B, Allemanni G, et al. Expression of DeltaNp73 is a molecular marker for adverse outcome in neuroblastoma patients. Cell Death Differ. 2002;9:246–51.

    Article  PubMed  CAS  Google Scholar 

  • Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W, et al. A role for TAZ in migration, invasion, and tumourigenesis of breast cancer cells. Cancer Res. 2008;68:2592–8.

    Article  PubMed  CAS  Google Scholar 

  • Chi SW, Ayed A, Arrowsmith CH. Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain. EMBO J. 1999;18:4438–45.

    Article  PubMed  CAS  Google Scholar 

  • Collavin L, Lunardi A, Del Sal G. p53-family proteins and their regulators: hubs and spokes in tumour suppression. Cell Death Differ. 2010;17:901–11.

    Article  PubMed  CAS  Google Scholar 

  • Costanzo A, Merlo P, Pediconi N, Fulco M, Sartorelli V, Cole PA, et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell. 2002;9:175–86.

    Article  PubMed  CAS  Google Scholar 

  • Danovi SA, Rossi M, Gudmundsdottir K, Yuan M, Melino G, Basu S. Yes-associated protein (YAP) is a critical mediator of c-Jun-dependent apoptosis. Cell Death Differ. 2008;15:217–9.

    Article  PubMed  CAS  Google Scholar 

  • Davison TS, Vagner C, Kaghad M, Ayed A, Caput D, Arrowsmith CH. p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J Biol Chem. 1999;274:18709–14.

    Article  PubMed  CAS  Google Scholar 

  • De Laurenzi V, Melino G. Evolution of functions within the p53/p63/p73 family. Ann N Y Acad Sci. 2000;926:90–100.

    Article  PubMed  Google Scholar 

  • De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A, Falco M, Annicchiarico-Petruzzelli M, et al. Two new p73 splice variants, gamma and delta, with different transcriptional activity. J Exp Med. 1998;188:1763–8.

    Article  PubMed  Google Scholar 

  • de Stanchina E, Querido E, Narita M, Davuluri RV, Pandolfi PP, Ferbeyre G, et al. PML is a direct p53 target that modulates p53 effector functions. Mol Cell. 2004;13:523–35.

    Article  PubMed  Google Scholar 

  • Di Agostino S, Cortese G, Monti O, Dell’Orso S, Sacchi A, Eisenstein M, et al. The disruption of the protein complex mutantp53/p73 increases selectively the response of tumour cells to anticancer drugs. Cell Cycle. 2008;7:3440–7.

    Article  PubMed  Google Scholar 

  • Di Como CJ, Gaiddon C, Prives C. p73 function is inhibited by tumour-derived p53 mutants in mammalian cells. Mol Cell Biol. 1999;19:1438–49.

    PubMed  Google Scholar 

  • Ding Y, Inoue T, Kamiyama J, Tamura Y, Ohtani-Fujita N, Igata E, et al. Molecular cloning and functional characterization of the upstream promoter region of the human p73 gene. DNA Res. 1999;6:347–51.

    Article  PubMed  CAS  Google Scholar 

  • Dominguez G, Garcia JM, Pena C, Silva J, Garcia V, Martinez L, et al. DeltaTAp73 upregulation correlates with poor prognosis in human tumours: putative in vivo network involving p73 isoforms, p53, and E2F-1. J Clin Oncol. 2006a;24:805–15.

    Article  PubMed  CAS  Google Scholar 

  • Dominguez G, Pena C, Silva J, Garcia JM, Garcia V, Rodriguez R, et al. The presence of an intronic deletion in p73 and high levels of ZEB1 alter the TAp73/DeltaTAp73 ratio in colorectal carcinomas. J Pathol. 2006b;210:390–7.

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130:1120–33.

    Article  PubMed  CAS  Google Scholar 

  • Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–83.

    Article  PubMed  CAS  Google Scholar 

  • Erster S, Moll UM. Stress-induced p53 runs a transcription-independent death program. Biochem Biophys Res Commun. 2005;331:843–50.

    Article  PubMed  CAS  Google Scholar 

  • Fang L, Lee SW, Aaronson SA. Comparative analysis of p73 and p53 regulation and effector functions. J Cell Biol. 1999;147:823–30.

    Article  PubMed  CAS  Google Scholar 

  • Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 2000;14:2015–27.

    PubMed  CAS  Google Scholar 

  • Ferrigno O, Lallemand F, Verrecchia F, L’Hoste S, Camonis J, Atfi A, et al. Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene. 2002;21:4879–84.

    Article  PubMed  CAS  Google Scholar 

  • Fillippovich I, Sorokina N, Gatei M, Haupt Y, Hobson K, Moallem E, et al. Transactivation-deficient p73alpha (p73Deltaexon2) inhibits apoptosis and competes with p53. Oncogene. 2001;20:514–22.

    Article  PubMed  CAS  Google Scholar 

  • Flinterman M, Guelen L, Ezzati-Nik S, Killick R, Melino G, Tominaga K, et al. E1A activates transcription of p73 and Noxa to induce apoptosis. J Biol Chem. 2005;280:5945–59.

    Article  PubMed  CAS  Google Scholar 

  • Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D, et al. Tumour predisposition in mice mutant for p63 and p73: evidence for broader tumour suppressor functions for the p53 family. Cancer Cell. 2005;7:363–73.

    Article  PubMed  CAS  Google Scholar 

  • Fontemaggi G, Gurtner A, Strano S, Higashi Y, Sacchi A, Piaggio G, et al. The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation. Mol Cell Biol. 2001;21:8461–70.

    Article  PubMed  CAS  Google Scholar 

  • Frasca F, Vella V, Aloisi A, Mandarino A, Mazzon E, Vigneri R, et al. p73 tumour-suppressor activity is impaired in human thyroid cancer. Cancer Res. 2003;63:5829–37.

    PubMed  CAS  Google Scholar 

  • Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C. A subset of tumour-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol. 2001;21:1874–87.

    Article  PubMed  CAS  Google Scholar 

  • Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin Jr WG, Levrero M, et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature. 1999;399:806–9.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez S, Prives C, Cordon-Cardo C. p73alpha regulation by Chk1 in response to DNA damage. Mol Cell Biol. 2003;23:8161–71.

    Article  PubMed  CAS  Google Scholar 

  • Grob TJ, Novak U, Maisse C, Barcaroli D, Luthi AU, Pirnia F, et al. Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ. 2001;8:1213–23.

    Article  PubMed  CAS  Google Scholar 

  • Guan M, Chen Y. Aberrant expression of DeltaNp73 in benign and malignant tumours of the prostate: correlation with Gleason score. J Clin Pathol. 2005;58:1175–9.

    Article  PubMed  CAS  Google Scholar 

  • Hainaut P, Soussi T, Shomer B, Hollstein M, Greenblatt M, Hovig E, et al. Database of p53 gene somatic mutations in human tumours and cell lines: updated compilation and future prospects. Nucleic Acids Res. 1997;25:151–7.

    Article  PubMed  CAS  Google Scholar 

  • Hao Y, Chun A, Cheung K, Rashidi B, Yang X. Tumour suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008;283:5496–509.

    Article  PubMed  CAS  Google Scholar 

  • Harms KL, Chen X. The C terminus of p53 family proteins is a cell fate determinant. Mol Cell Biol. 2005;25:2014–30.

    Article  PubMed  CAS  Google Scholar 

  • Hollstein M, Soussi T, Thomas G, von Brevern MC, Bartsch. P53 gene alterations in human tumours: perspectives for cancer control. Recent Results Cancer Res. 1997;143:369–89.

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Poy F, Zhang R, Joachimiak A, Sudol M, Eck MJ. Structure of a WW domain containing fragment of dystrophin in complex with beta-dystroglycan. Nat Struct Biol. 2000;7:634–8.

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Wu S, Barrera J, Matthews K, Pan D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell. 2005;122:421–34.

    Article  PubMed  CAS  Google Scholar 

  • Ikawa S, Nakagawara A, Ikawa Y. p53 family genes: structural comparison, expression and mutation. Cell Death Differ. 1999;6:1154–61.

    Article  PubMed  CAS  Google Scholar 

  • Irwin MS, Kaelin WG. p53 family update: p73 and p63 develop their own identities. Cell Growth Differ. 2001;12:337–49.

    PubMed  CAS  Google Scholar 

  • Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W, et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature. 2000;407:645–8.

    Article  PubMed  CAS  Google Scholar 

  • Ishimoto O, Kawahara C, Enjo K, Obinata M, Nukiwa T, Ikawa S. Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73. Cancer Res. 2002;62:636–41.

    PubMed  CAS  Google Scholar 

  • Jost CA, Marin MC, Kaelin Jr WG. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature. 1997;389:191–4.

    Article  PubMed  CAS  Google Scholar 

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997;90:809–19.

    Article  PubMed  CAS  Google Scholar 

  • Kartasheva NN, Contente A, Lenz-Stoppler C, Roth J, Dobbelstein M. p53 induces the expression of its antagonist p73 Delta N, establishing an autoregulatory feedback loop. Oncogene. 2002;21:4715–27.

    Article  PubMed  CAS  Google Scholar 

  • Komuro A, Nagai M, Navin NE, Sudol M. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem. 2003;278:33334–41.

    Article  PubMed  CAS  Google Scholar 

  • Kontaki H, Talianidis I. Lysine methylation regulates E2F1-induced cell death. Mol Cell. 2010;39:152–60.

    Article  PubMed  CAS  Google Scholar 

  • Lam-Himlin DM, Daniels JA, Gayyed MF, Dong J, Maitra A, Pan D, et al. The hippo pathway in human upper gastrointestinal dysplasia and carcinoma: a novel oncogenic pathway. Int J Gastrointest Cancer. 2006;37:103–9.

    PubMed  Google Scholar 

  • Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278:261–3.

    Article  PubMed  CAS  Google Scholar 

  • Lapi E, Di Agostino S, Donzelli S, Gal H, Domany E, Rechavi G, et al. PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. Mol Cell. 2008;32:803–14.

    Article  PubMed  CAS  Google Scholar 

  • Lee CW, La Thangue NB. Promoter specificity and stability control of the p53-related protein p73. Oncogene. 1999;18:4171–81.

    Article  PubMed  CAS  Google Scholar 

  • Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, et al. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol. 2008;28:2426–36.

    Article  PubMed  CAS  Google Scholar 

  • Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci. 2000;113(Pt 10):1661–70.

    PubMed  CAS  Google Scholar 

  • Levy D, Adamovich Y, Reuven N, Shaul Y. Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell. 2008;29:350–61.

    Article  PubMed  CAS  Google Scholar 

  • Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumour antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979;17:43–52.

    Article  PubMed  CAS  Google Scholar 

  • Lissy NA, Davis PK, Irwin M, Kaelin WG, Dowdy SF. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature. 2000;407:642–5.

    Article  PubMed  CAS  Google Scholar 

  • Marabese M, Vikhanskaya F, Rainelli C, Sakai T, Broggini M. DNA damage induces transcriptional activation of p73 by removing C-EBPalpha repression on E2F1. Nucleic Acids Res. 2003;31:6624–32.

    Article  PubMed  CAS  Google Scholar 

  • Marabese M, Vikhanskaya F, Broggini M. p73: a chiaroscuro gene in cancer. Eur J Cancer. 2007;43:1361–72.

    Article  PubMed  CAS  Google Scholar 

  • Marin MC, Kaelin Jr WG. p63 and p73: old members of a new family. Biochim Biophys Acta. 2000;1470:M93–100.

    PubMed  CAS  Google Scholar 

  • Marin MC, Jost CA, Brooks LA, Irwin MS, O’Nions J, Tidy JA, et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet. 2000;25:47–54.

    Article  PubMed  CAS  Google Scholar 

  • Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, et al. RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumour suppressor protein. Mol Cell. 2007;27:962–75.

    Article  PubMed  CAS  Google Scholar 

  • Melino G. p73, the “assistant” guardian of the genome? Ann N Y Acad Sci. 2003;1010:9–15.

    Article  PubMed  CAS  Google Scholar 

  • Melino G, De Laurenzi V, Vousden KH. p73: friend or foe in tumourigenesis. Nat Rev Cancer. 2002;2:605–15.

    Article  PubMed  CAS  Google Scholar 

  • Melino G, Bernassola F, Ranalli M, Yee K, Zong WX, Corazzari M, et al. p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem. 2004;279:8076–83.

    Article  PubMed  CAS  Google Scholar 

  • Mills AA. p53: link to the past, bridge to the future. Genes Dev. 2005;19:2091–9.

    Article  PubMed  CAS  Google Scholar 

  • Minty A, Dumont X, Kaghad M, Caput D. Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem. 2000;275:36316–23.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki K, Ozaki T, Kato C, Hanamoto T, Fujita T, Irino S, et al. A novel HECT-type E3 ­ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity. Biochem Biophys Res Commun. 2003;308:106–13.

    Article  PubMed  CAS  Google Scholar 

  • Moll UM, Slade N. p63 and p73: roles in development and tumour formation. Mol Cancer Res. 2004;2:371–86.

    PubMed  CAS  Google Scholar 

  • Morin-Kensicki EM, Boone BN, Howell M, Stonebraker JR, Teed J, Alb JG, et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol Cell Biol. 2006;26:77–87.

    Article  PubMed  CAS  Google Scholar 

  • Muller M, Schilling T, Sayan AE, Kairat A, Lorenz K, Schulze-Bergkamen H, et al. TAp73/Delta Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell Death Differ. 2005;12:1564–77.

    Article  PubMed  CAS  Google Scholar 

  • Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 2006;13:962–72.

    Article  PubMed  CAS  Google Scholar 

  • Naka M, Ozaki T, Takada N, Takahashi M, Shishikura T, Sakiyama S, et al. Functional characterization of naturally occurring mutants (P405R and P425L) of p73alpha and p73beta found in neuroblastoma and lung cancer. Oncogene. 2001;20:3568–72.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Takahashi M, Ozaki T, Watanabe Ki K, Todo S, Mizuguchi H, et al. Autoinhibitory regulation of p73 by delta Np73 to modulate cell survival and death through a p73-specific target element within the Delta Np73 promoter. Mol Cell Biol. 2002;22:2575–85.

    Article  PubMed  CAS  Google Scholar 

  • Nimura Y, Mihara M, Ichimiya S, Sakiyama S, Seki N, Ohira M, et al. p73, a gene related to p53, is not mutated in esophageal carcinomas. Int J Cancer. 1998;78:437–40.

    Article  PubMed  CAS  Google Scholar 

  • Nomoto S, Haruki N, Kondo M, Konishi H, Takahashi T. Search for mutations and examination of allelic expression imbalance of the p73 gene at 1p36.33 in human lung cancers. Cancer Res. 1998;58:1380–3.

    PubMed  CAS  Google Scholar 

  • Ohtsuka T, Ryu H, Minamishima YA, Ryo A, Lee SW. Modulation of p53 and p73 levels by cyclin G: implication of a negative feedback regulation. Oncogene. 2003;22:1678–87.

    Article  PubMed  CAS  Google Scholar 

  • Oka T, Mazack V, Sudol M. Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J Biol Chem. 2008;283:27534–46.

    Article  PubMed  CAS  Google Scholar 

  • Omerovic J, Puggioni EM, Napoletano S, Visco V, Fraioli R, Frati L, et al. Ligand-regulated association of ErbB-4 to the transcriptional co-activator YAP65 controls transcription at the nuclear level. Exp Cell Res. 2004;294:469–79.

    Article  PubMed  CAS  Google Scholar 

  • Ory K, Legros Y, Auguin C, Soussi T. Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J. 1994;13:3496–504.

    PubMed  CAS  Google Scholar 

  • Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A. 2006;103:12405–10.

    Article  PubMed  CAS  Google Scholar 

  • Ozaki T, Nakagawara A. p73, a sophisticated p53 family member in the cancer world. Cancer Sci. 2005;96:729–37.

    Article  PubMed  CAS  Google Scholar 

  • Ozaki T, Naka M, Takada N, Tada M, Sakiyama S, Nakagawara A. Deletion of the COOH-terminal region of p73alpha enhances both its transactivation function and DNA-binding activity but inhibits induction of apoptosis in mammalian cells. Cancer Res. 1999;59:5902–7.

    PubMed  CAS  Google Scholar 

  • Ozaki T, Okoshi R, Sang M, Kubo N, Nakagawara A. Acetylation status of E2F-1 has an important role in the regulation of E2F-1-mediated transactivation of tumour suppressor p73. Biochem Biophys Res Commun. 2009;386:207–11.

    Article  PubMed  CAS  Google Scholar 

  • Pan D. Hippo signaling in organ size control. Genes Dev. 2007;21:886–97.

    Article  PubMed  CAS  Google Scholar 

  • Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature. 2000;406:207–10.

    Article  PubMed  CAS  Google Scholar 

  • Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L, et al. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol. 2003;5:552–8.

    Article  PubMed  CAS  Google Scholar 

  • Pediconi N, Guerrieri F, Vossio S, Bruno T, Belloni L, Schinzari V, et al. hSirT1-dependent ­regulation of the PCAF-E2F1-p73 apoptotic pathway in response to DNA damage. Mol Cell Biol. 2009;29:1989–98.

    Article  PubMed  CAS  Google Scholar 

  • Petrenko O, Zaika A, Moll UM. deltaNp73 facilitates cell immortalization and cooperates with oncogenic Ras in cellular transformation in vivo. Mol Cell Biol. 2003;23:5540–55.

    Article  PubMed  CAS  Google Scholar 

  • Pozniak CD, Radinovic S, Yang A, McKeon F, Kaplan DR, Miller FD. An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science. 2000;289:304–6.

    Article  PubMed  CAS  Google Scholar 

  • Pozniak CD, Barnabe-Heider F, Rymar VV, Lee AF, Sadikot AF, Miller FD. p73 is required for survival and maintenance of CNS neurons. J Neurosci. 2002;22:9800–9.

    PubMed  CAS  Google Scholar 

  • Ramadan S, Terrinoni A, Catani MV, Sayan AE, Knight RA, Mueller M, et al. p73 induces apoptosis by different mechanisms. Biochem Biophys Res Commun. 2005;331:713–7.

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Datta R, Shioya H, Li Y, Oki E, Biedermann V, et al. p73beta is regulated by protein kinase Cdelta catalytic fragment generated in the apoptotic response to DNA damage. J Biol Chem. 2002;277:33758–65.

    Article  PubMed  CAS  Google Scholar 

  • Robinson RA, Lu X, Jones EY, Siebold C. Biochemical and structural studies of ASPP proteins reveal differential binding to p53, p63, and p73. Structure. 2008;16:259–68.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 1999;18:6455–61.

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Sayan AE, Terrinoni A, Melino G, Knight RA. Mechanism of induction of apoptosis by p73 and its relevance to neuroblastoma biology. Ann N Y Acad Sci. 2004;1028:143–9.

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, De Laurenzi V, Munarriz E, Green DR, Liu YC, Vousden KH, et al. The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J. 2005;24:836–48.

    Article  PubMed  CAS  Google Scholar 

  • Salomoni P, Pandolfi PP. The role of PML in tumour suppression. Cell. 2002;108:165–70.

    Article  PubMed  CAS  Google Scholar 

  • Samuels-Lev Y, O’Connor DJ, Bergamaschi D, Trigiante G, Hsieh JK, Zhong S, et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell. 2001;8:781–94.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Prieto R, Sanchez-Arevalo VJ, Servitja JM, Gutkind JS. Regulation of p73 by c-Abl through the p38 MAP kinase pathway. Oncogene. 2002;21:974–9.

    Article  PubMed  CAS  Google Scholar 

  • Sawada A, Kiyonari H, Ukita K, Nishioka N, Imuta Y, Sasaki H. Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival. Mol Cell Biol. 2008;28:3177–89.

    Article  PubMed  CAS  Google Scholar 

  • Sayan AE, Sayan BS, Gogvadze V, Dinsdale D, Nyman U, Hansen TM, et al. P73 and caspase-cleaved p73 fragments localize to mitochondria and augment TRAIL-induced apoptosis. Oncogene. 2008;27:4363–72.

    Article  PubMed  CAS  Google Scholar 

  • Shishikura T, Ichimiya S, Ozaki T, Nimura Y, Kageyama H, Nakamura Y, et al. Mutational analysis of the p73 gene in human breast cancers. Int J Cancer. 1999;84:321–5.

    Article  PubMed  CAS  Google Scholar 

  • Slade N, Zaika AI, Erster S, Moll UM. DeltaNp73 stabilises TAp73 proteins but compromises their function due to inhibitory hetero-oligomer formation. Cell Death Differ. 2004;11:357–60.

    Article  PubMed  CAS  Google Scholar 

  • Stiewe T, Putzer BM. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat Genet. 2000;26:464–9.

    Article  PubMed  CAS  Google Scholar 

  • Stiewe T, Putzer BM. Role of p73 in malignancy: tumour suppressor or oncogene? Cell Death Differ. 2002;9:237–45.

    Article  PubMed  CAS  Google Scholar 

  • Stiewe T, Theseling CC, Putzer BM. Transactivation-deficient Delta TA-p73 inhibits p53 by direct competition for DNA binding: implications for tumourigenesis. J Biol Chem. 2002;277:14177–85.

    Article  PubMed  CAS  Google Scholar 

  • Strano S, Blandino G. p73-mediated chemosensitivity: a preferential target of oncogenic mutant p53. Cell Cycle. 2003;2:348–9.

    Article  PubMed  CAS  Google Scholar 

  • Strano S, Munarriz E, Rossi M, Cristofanelli B, Shaul Y, Castagnoli L, et al. Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem. 2000;275:29503–12.

    Article  PubMed  CAS  Google Scholar 

  • Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A, et al. Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem. 2001;276:15164–73.

    Article  PubMed  CAS  Google Scholar 

  • Strano S, Monti O, Pediconi N, Baccarini A, Fontemaggi G, Lapi E, et al. The transcriptional coactivator Yes-associated protein drives p73 gene-target specificity in response to DNA damage. Mol Cell. 2005;18:447–59.

    Article  PubMed  CAS  Google Scholar 

  • Sudol M. Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene. 1994;9:2145–52.

    PubMed  CAS  Google Scholar 

  • Sudol M, Hunter T. NeW wrinkles for an old domain. Cell. 2000;103:1001–4.

    Article  PubMed  CAS  Google Scholar 

  • Sudol M, Bork P, Einbond A, Kastury K, Druck T, Negrini M, et al. Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J Biol Chem. 1995;270:14733–41.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Ichimiya S, Nimura Y, Watanabe M, Furusato M, Wakui S, et al. Mutation, allelotyping, and transcription analyses of the p73 gene in prostatic carcinoma. Cancer Res. 1998;58:2076–7.

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Kameoka M, Itaya A, Ota K, Yoshihara K. Regulation of HSF1-responsive gene expression by N-terminal truncated form of p73alpha. Biochem Biophys Res Commun. 2004;317:865–72.

    Article  PubMed  CAS  Google Scholar 

  • Tannapfel A, Wasner M, Krause K, Geissler F, Katalinic A, Hauss J, et al. Expression of p73 and its relation to histopathology and prognosis in hepatocellular carcinoma. J Natl Cancer Inst. 1999;91:1154–8.

    Article  PubMed  CAS  Google Scholar 

  • Tannapfel A, John K, Mise N, Schmidt A, Buhlmann S, Ibrahim SM, et al. Autonomous growth and hepatocarcinogenesis in transgenic mice expressing the p53 family inhibitor DNp73. Carcinogenesis. 2008;29:211–8.

    Article  PubMed  CAS  Google Scholar 

  • Terrinoni A, Ranalli M, Cadot B, Leta A, Bagetta G, Vousden KH, et al. p73-alpha is capable of inducing scotin and ER stress. Oncogene. 2004;23:3721–5.

    Article  PubMed  CAS  Google Scholar 

  • Tomasini R, Tsuchihara K, Tsuda C, Lau SK, Wilhelm M, Ruffini A, et al. TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity. Proc Natl Acad Sci U S A. 2009;106:797–802.

    Article  PubMed  CAS  Google Scholar 

  • Ueda Y, Hijikata M, Takagi S, Chiba T, Shimotohno K. New p73 variants with altered C-terminal structures have varied transcriptional activities. Oncogene. 1999;18:4993–8.

    Article  PubMed  CAS  Google Scholar 

  • Uramoto H, Sugio K, Oyama T, Nakata S, Ono K, Morita M, et al. Expression of deltaNp73 predicts poor prognosis in lung cancer. Clin Cancer Res. 2004;10:6905–11.

    Article  PubMed  CAS  Google Scholar 

  • Uramoto H, Sugio K, Oyama T, Nakata S, Ono K, Nozoe T, et al. Expression of the p53 family in lung cancer. Anticancer Res. 2006;26:1785–90.

    PubMed  CAS  Google Scholar 

  • Urist M, Tanaka T, Poyurovsky MV, Prives C. p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev. 2004;18:3041–54.

    Article  PubMed  CAS  Google Scholar 

  • Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 2001;15:1229–41.

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen K, Berneman ZN, Van Bockstaele DR. Cell cycle and apoptosis. Cell Prolif. 2003;36:165–75.

    Article  PubMed  CAS  Google Scholar 

  • Vossio S, Palescandolo E, Pediconi N, Moretti F, Balsano C, Levrero M, et al. DN-p73 is activated after DNA damage in a p53-dependent manner to regulate p53-induced cell cycle arrest. Oncogene. 2002;21:3796–803.

    Article  PubMed  CAS  Google Scholar 

  • Wager M, Guilhot J, Blanc JL, Ferrand S, Milin S, Bataille B, et al. Prognostic value of increase in transcript levels of Tp73 DeltaEx2-3 isoforms in low-grade glioma patients. Br J Cancer. 2006;95:1062–9.

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Yu W, Hu Z, Jia L, Iyer VR, Sanders BG, et al. Involvement of JNK/p73/NOXA in vitamin E analog-induced apoptosis of human breast cancer cells. Mol Carcinog. 2008;47:436–45.

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Murai S, Kataoka K, Miyagishi M. Yin Yang 1 induces transcriptional activity of p73 through cooperation with E2F1. Biochem Biophys Res Commun. 2008;365:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Yaffe MB, Elia AE. Phosphoserine/threonine-binding domains. Curr Opin Cell Biol. 2001;13:131–8.

    Article  PubMed  CAS  Google Scholar 

  • Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y. A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J. 1999;18:2551–62.

    Article  PubMed  CAS  Google Scholar 

  • Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998;2:305–16.

    Article  PubMed  CAS  Google Scholar 

  • Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999;398:714–8.

    Article  PubMed  CAS  Google Scholar 

  • Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J, et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature. 2000;404:99–103.

    Article  PubMed  CAS  Google Scholar 

  • Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY, et al. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature. 1999;399:814–7.

    Article  PubMed  CAS  Google Scholar 

  • Yuan M, Tomlinson V, Lara R, Holliday D, Chelala C, Harada T, et al. Yes-associated protein (YAP) functions as a tumour suppressor in breast. Cell Death Differ. 2008;15:1752–9.

    Article  PubMed  CAS  Google Scholar 

  • Zaidi SK, Sullivan AJ, Medina R, Ito Y, van Wijnen AJ, Stein JL, et al. Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J. 2004;23:790–9.

    Article  PubMed  CAS  Google Scholar 

  • Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell. 2006;125:1253–67.

    Article  PubMed  CAS  Google Scholar 

  • Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X, et al. MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol. 1999;19:3257–66.

    PubMed  CAS  Google Scholar 

  • Zeng X, Li X, Miller A, Yuan Z, Yuan W, Kwok RP, et al. The N-terminal domain of p73 interacts with the CH1 domain of p300/CREB binding protein and mediates transcriptional activation and apoptosis. Mol Cell Biol. 2000;20:1299–310.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Smolen GA, Haber DA. Negative regulation of YAP by LATS1 underscores evolutionary conservation of the Drosophila Hippo pathway. Cancer Res. 2008;68:2789–94.

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747–61.

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Jiang J, Zhou W, Chen X. The potential tumour suppressor p73 differentially regulates cellular p53 target genes. Cancer Res. 1998;58:5061–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Blandino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Donzelli, S., Strano, S., Blandino, G. (2013). YAP and p73: A Matter of Mutual Specificity in Tumor Suppression. In: Oren, M., Aylon, Y. (eds) The Hippo Signaling Pathway and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6220-0_8

Download citation

Publish with us

Policies and ethics