Skip to main content

Roles of Hippo Signaling During Mouse Embryogenesis

  • Chapter
  • First Online:
The Hippo Signaling Pathway and Cancer
  • 1864 Accesses

Abstract

Embryos undergo dynamic morphological changes during embryogenesis, and elaborate the basic body plan of adults from a single fertilized egg. The Hippo signaling pathway, originally identified as a tumor suppressor signaling pathway in Drosophila, is conserved in mice and controls intercellular communication by cell–cell contacts. Recent studies of mouse mutants reveal the roles of Hippo pathway components in the various stages of embryogenesis. Hippo signaling not only regulates cell proliferation and apoptosis but also controls cell fate specification. In this review, I summarize the roles of Hippo signaling during early embryogenesis and discuss the conservation and divergence of the roles and pathways in flies and mice depending upon the developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ang SL, Rossant J. HNF-3 β is essential for node and notochord formation in mouse development. Cell. 1994;78(4):561–74.

    Article  PubMed  CAS  Google Scholar 

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17(1):126–40.

    Article  PubMed  CAS  Google Scholar 

  • Alarcon VB. Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo. Biol Reprod. 2010;83(3):347–58. doi:biolreprod.110.084400 [pii] 10.1095/biolreprod.110.084400.

    Article  PubMed  CAS  Google Scholar 

  • Chen CL, Gajewski KM, Hamaratoglu F, Bossuyt W, Sansores-Garcia L, Tao C, et al. The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci U S A. 2010;107(36):15810–5. doi:1004060107 [pii] 10.1073/pnas.1004060107.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Yabuuchi A, Eminli S, Takeuchi A, Lu CW, Hochedlinger K, et al. Cross-regulation of the Nanog and Cdx2 promoters. Cell Res. 2009;19(9):1052–61. doi:cr200979 [pii] 10.1038/cr.2009.79.

    Article  PubMed  Google Scholar 

  • Chen Z, Friedrich GA, Soriano P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 1994;8(19):2293–301.

    Article  PubMed  CAS  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113(5):643–55.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich JE, Hiiragi T. Stochastic patterning in the mouse pre-implantation embryo. Development. 2007;134(23):4219–31.

    Article  PubMed  CAS  Google Scholar 

  • Grzeschik NA, Parsons LM, Allott ML, Harvey KF, Richardson HE. Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr Biol. 2010;20(7):573–81. doi:S0960-9822(10)00151-X [pii] 10.1016/j.cub.2010.01.055.

    Article  PubMed  CAS  Google Scholar 

  • Halder G, Johnson RL. Hippo signaling: growth control and beyond. Development. 2011;138(1):9–22. doi:138/1/9 [pii] 10.1242/dev.045500.

    Article  PubMed  CAS  Google Scholar 

  • Hirate Y, Cockburn K, Rossant J, Sasaki H. Tead4 is constitutively nuclear, while nuclear vs. cytoplasmic Yap distribution is regulated in preimplantation embryos. Proc. Natl. Acad. Sci. USA. 2012;109:E3389-90. doi:10.1073/pnas.1211810109.

    Article  PubMed  CAS  Google Scholar 

  • Home P, Saha B, Ray S, Dutta D, Gunewardena S, Yoo B, et al. Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proc Natl Acad Sci U S A. 2012;109(19):7362–7. doi:10.1073/pnas.1201595109.

    Article  PubMed  CAS  Google Scholar 

  • Hossain Z, Ali SM, Ko HL, Xu J, Ng CP, Guo K, et al. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci U S A. 2007;104(5):1631–6.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko KJ, Kohn MJ, Liu C, Depamphilis ML. Transcription factor TEAD2 is involved in neural tube closure. Genesis. 2007;45(9):577–87.

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Li Y, Kim SM, Bossuyt W, Liu P, Qiu Q, et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci U S A. 2010;107(4):1437–42. doi:0911427107 [pii] 10.1073/pnas.0911427107.

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Kim TS, Yang TH, Koo BK, Oh SP, Lee KP, et al. A crucial role of WW45 in developing epithelial tissues in the mouse. EMBO J. 2008;27(8):1231–42.

    Article  PubMed  CAS  Google Scholar 

  • Ling C, Zheng Y, Yin F, Yu J, Huang J, Hong Y, et al. The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc Natl Acad Sci U S A. 2010;107(23):10532–7. doi:1004279107 [pii] 10.1073/pnas.1004279107.

    Article  PubMed  CAS  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113(5):631–42.

    Article  PubMed  CAS  Google Scholar 

  • Makita R, Uchijima Y, Nishiyama K, Amano T, Chen Q, Takeuchi T, et al. Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol. 2008;294(3):F542–53.

    CAS  Google Scholar 

  • McClatchey AI, Saotome I, Ramesh V, Gusella JF, Jacks T. The Nf2 tumor suppressor gene product is essential for extraembryonic development immediately prior to gastrulation. Genes Dev. 1997;11(10):1253–65.

    Article  PubMed  CAS  Google Scholar 

  • McPherson JP, Tamblyn L, Elia A, Migon E, Shehabeldin A, Matysiak-Zablocki E, et al. Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity. EMBO J. 2004;23(18):3677–88.

    Article  PubMed  CAS  Google Scholar 

  • Morin-Kensicki EM, Boone BN, Howell M, Stonebraker JR, Teed J, Alb JG, et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol Cell Biol. 2006;26(1):77–87.

    Article  PubMed  CAS  Google Scholar 

  • Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell. 2005;123(5):917–29.

    Article  PubMed  CAS  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95(3):379–91.

    Article  PubMed  CAS  Google Scholar 

  • Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev. 2008;125(3–4):270–83.

    Article  PubMed  CAS  Google Scholar 

  • Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell. 2009;16(3):398–410.

    Article  PubMed  CAS  Google Scholar 

  • Ota M, Sasaki H. Mammalian Tead proteins regulate cell proliferation and contact inhibition as a transcriptional mediator of Hippo signaling. Development. 2008;135:4059–69.

    Article  PubMed  CAS  Google Scholar 

  • Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A. 2006;103(33):12405–10.

    Article  PubMed  CAS  Google Scholar 

  • Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19(4):491–505. doi:S1534-5807(10)00429-6 [pii] 10.1016/j.devcel.2010.09.011.

    Article  PubMed  CAS  Google Scholar 

  • Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E, Rugg-Gunn P, et al. Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development. 2010;137(3):395–403. doi:137/3/395 [pii] 10.1242/dev.038828.

    Article  PubMed  CAS  Google Scholar 

  • Robinson BS, Huang J, Hong Y, Moberg KH. Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol. 2010;20(7):582–90. doi:S0960-9822(10)00338-6 [pii] 10.1016/j.cub.2010.03.019.

    Article  PubMed  CAS  Google Scholar 

  • Sawada A, Kiyonari H, Ukita K, Nishioka N, Imuta Y, Sasaki H. Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival. Mol Cell Biol. 2008;28(10):3177–89.

    Article  PubMed  CAS  Google Scholar 

  • Stanger BZ. Quit your YAPing: a new target for cancer therapy. Genes Dev. 2012;26(12):1263–7. doi:10.1101/gad.196501.112.

    Article  PubMed  CAS  Google Scholar 

  • Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development. 2005;132(9):2093–102.

    Article  PubMed  CAS  Google Scholar 

  • Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L, et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci U S A. 2010;107(4):1431–6. doi:0911409107 [pii] 10.1073/pnas.0911409107.

    Article  PubMed  CAS  Google Scholar 

  • Shimono A, Behringer RR. Angiomotin regulates visceral endoderm movements during mouse embryogenesis. Curr Biol. 2003;13(7):613–7. doi:S0960982203002045 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Sawada A, Nishizaki Y, Sato H, Yada Y, Nakayama R, Yamamoto S, et al. Tead proteins activate the Foxa2 enhancer in the node in cooperation with a second factor. Development. 2005;132(21):4719–29.

    Article  PubMed  CAS  Google Scholar 

  • Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 2001;15(10):1229–41.

    Article  PubMed  CAS  Google Scholar 

  • Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell. 2010;19(6):831–44. doi:S1534-5807(10)00539-3 [pii] 10.1016/j.devcel.2010.11.012.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein DC, Ruiz i Altaba A, Chen WS, Hoodless P, Prezioso VR, Jessell TM, et al. The winged-helix transcription factor HNF-3 β is required for notochord development in the mouse embryo. Cell. 1994;78(4):575–88.

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Patrakka J, Nukui M, Chi L, Niu D, Betsholtz C, et al. Deficiency in Crumbs homolog 2 (Crb2) affects gastrulation and results in embryonic lethality in mice. Dev Dyn. 2011;240(12):2646–56. doi:10.1002/dvdy.22778.

    Article  PubMed  CAS  Google Scholar 

  • Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, Depamphilis ML, et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian d­evelopment. Development. 2007;134(21):3827–36.

    Article  PubMed  CAS  Google Scholar 

  • Yabuta N, Okada N, Ito A, Hosomi T, Nishihara S, Sasayama Y, et al. Lats2 is an essential mitotic regulator required for the coordination of cell division. J Biol Chem. 2007;282(26):19259–71.

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Ye X, Yu J, Li L, Li W, Li S, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22(14):1962–71.

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Li L, Lei Q, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 2010;24(9):862–74. doi:10.1101/gad.1909210.

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61.

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell. 2009;16(5):425–38. doi:S1535-6108(09)00337-7 [pii] 10.1016/j.ccr.2009.09.026.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sasaki, H. (2013). Roles of Hippo Signaling During Mouse Embryogenesis. In: Oren, M., Aylon, Y. (eds) The Hippo Signaling Pathway and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6220-0_12

Download citation

Publish with us

Policies and ethics