Skip to main content

Hippo in Cell Cycle and Mitosis

  • Chapter
  • First Online:
The Hippo Signaling Pathway and Cancer
  • 2033 Accesses

Abstract

The Hippo pathway regulates cell growth and cell cycle-dependent ­processes, including mitosis, cell cycle checkpoints, mitotic checkpoints, and DNA damage response (DDR) checkpoints, thereby preventing the accumulation of abnormal cells with aneuploidy and polyploidy. Moreover, Mst1/2, Lats1/2, Mob1, and Rassf1A ­primarily colocalize with mitotic regulators, such as Aurora A and Polo, at the centrosome, and then dynamically translocate to the nucleus or the central spindle and the midbody in response to various stimuli. In particular, Lats1/2 play various roles in the DDR checkpoint, maintaining centrosome integrity, mitotic checkpoints (including the spindle assembly checkpoint (SAC)), mitotic exit, cytokinesis, EMT, and cellular senescence. Lats2 also plays a pivotal role in the cell cycle checkpoint via the p53 pathway, thereby functioning as another “guardian” of genome integrity. Therefore, the machinery and related molecules within the Hippo pathway may be potent and promising cancer therapy targets, which may arrest or kill malignant tumor cells without the side effects associated with commonly used treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y, Ohsugi M, Haraguchi K, et al. LATS2-Ajuba complex regulates gamma-tubulin recruitment to centrosomes and spindle organization during mitosis. FEBS Lett. 2006;580:782–8.

    PubMed  CAS  Google Scholar 

  • Avruch J, Xavier R, Bardeesy N, et al. Rassf family of tumor suppressor polypeptides. J Biol Chem. 2009;284:11001–5.

    PubMed  CAS  Google Scholar 

  • Aylon Y, Oren M. p53: guardian of ploidy. Mol Oncol. 2011;5:315–23.

    PubMed  CAS  Google Scholar 

  • Aylon Y, Michael D, Shmueli A, et al. A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev. 2006;20:2687–700.

    PubMed  CAS  Google Scholar 

  • Aylon Y, Yabuta N, Besserglick H, et al. Silencing of the Lats2 tumor suppressor overrides a p53-dependent oncogenic stress checkpoint and enables mutant H-Ras-driven cell transformation. Oncogene. 2009;28:4469–79.

    PubMed  CAS  Google Scholar 

  • Aylon Y, Ofir-Rosenfeld Y, Yabuta N, et al. The Lats2 tumor suppressor augments p53-mediated apoptosis by promoting the nuclear proapoptotic function of ASPP1. Genes Dev. 2010;24:2420–9.

    PubMed  CAS  Google Scholar 

  • Bardin AJ, Amon A. Men and sin: what’s the difference? Nat Rev Mol Cell Biol. 2001;2:815–26.

    PubMed  CAS  Google Scholar 

  • Bartek J, Bartkova J, Lukas J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene. 2007;26:7773–9.

    PubMed  CAS  Google Scholar 

  • Baumgartner R, Poernbacher I, Buser N, et al. The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell. 2010;18:309–16.

    PubMed  CAS  Google Scholar 

  • Bettencourt-Dias M, Giet R, Sinka R, et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature. 2004;432:980–7.

    PubMed  CAS  Google Scholar 

  • Boggiano JC, Fehon RG. Growth control by committee: intercellular junctions, cell polarity, and the cytoskeleton regulate hippo signaling. Dev Cell. 2012;22:695–702.

    PubMed  CAS  Google Scholar 

  • Bothos J, Tuttle RL, Ottey M, et al. Human LATS1 is a mitotic exit network kinase. Cancer Res. 2005;65:6568–75.

    PubMed  CAS  Google Scholar 

  • Chan EH, Nousiainen M, Chalamalasetty RB, et al. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene. 2005;24:2076–86.

    PubMed  CAS  Google Scholar 

  • Chiba S, Ikeda M, Katsunuma K, et al. MST2- and Furry-mediated activation of NDR1 kinase is critical for precise alignment of mitotic chromosomes. Curr Biol. 2009;19:675–81.

    PubMed  CAS  Google Scholar 

  • Chiyoda T, Sugiyama N, Shimizu T, et al. LATS1/WARTS phosphorylates MYPT1 to counteract PLK1 and regulate mammalian mitotic progression. J Cell Biol. 2012;197:625–41.

    PubMed  CAS  Google Scholar 

  • Cho WJ, Shin JM, Kim JS, et al. miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2. Mol Cells. 2009;28:521–7.

    PubMed  CAS  Google Scholar 

  • Chow C, Wong N, Pagano M, et al. Regulation of APC/CCdc20 activity by RASSF1A-APC/CCdc20 circuitry. Oncogene. 2012;31:1975–87.

    PubMed  CAS  Google Scholar 

  • Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40:179–204.

    PubMed  CAS  Google Scholar 

  • Colombani J, Polesello C, Josué F, et al. Dmp53 activates the Hippo pathway to promote cell death in response to DNA damage. Curr Biol. 2006;16:1453–8.

    PubMed  CAS  Google Scholar 

  • Cornils H, Kohler RS, Hergovich A, et al. Human NDR kinases control G(1)/S cell cycle transition by directly regulating p21 stability. Mol Cell Biol. 2011a;31:1382–95.

    PubMed  CAS  Google Scholar 

  • Cornils H, Kohler RS, Hergovich A, et al. Downstream of human NDR kinases: impacting on c-myc and p21 protein stability to control cell cycle progression. Cell Cycle. 2011b;10:1897–904.

    PubMed  CAS  Google Scholar 

  • Dallol A, Cooper WN, Al-Mulla F, et al. Depletion of the Ras association domain family 1, isoform A-associated novel microtubule-associated protein, C19ORF5/MAP1S, causes mitotic abnormalities. Cancer Res. 2007;67:492–500.

    PubMed  CAS  Google Scholar 

  • Das Thakur M, Feng Y, Jagannathan R, et al. Ajuba LIM proteins are negative regulators of the Hippo signaling pathway. Curr Biol. 2010;20:657–62.

    PubMed  CAS  Google Scholar 

  • Davoli T, de Lange T. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol. 2011;27:585–610.

    PubMed  CAS  Google Scholar 

  • Donninger H, Vos MD, Clark GJ. The RASSF1A tumor suppressor. J Cell Sci. 2007;120:3163–72.

    PubMed  CAS  Google Scholar 

  • Finkin S, Aylon Y, Anzi S, et al. Fbw7 regulates the activity of endoreduplication mediators and the p53 pathway to prevent drug-induced polyploidy. Oncogene. 2008;27:4411–21.

    PubMed  CAS  Google Scholar 

  • Frenz LM, Lee SE, Fesquet D, et al. The budding yeast Dbf2 protein kinase localises to the centrosome and moves to the bud neck in late mitosis. J Cell Sci. 2000;113:3399–408.

    PubMed  CAS  Google Scholar 

  • Genevet A, Wehr MC, Brain R, et al. Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell. 2010;18:300–8.

    PubMed  CAS  Google Scholar 

  • Gordon DJ, Resio B, Pellman D. Causes and consequences of aneuploidy in cancer. Nat Rev Genet. 2012;13:189–203.

    PubMed  CAS  Google Scholar 

  • Guertin DA, Chang L, Irshad F, et al. The role of the sid1p kinase and cdc14p in regulating the onset of cytokinesis in fission yeast. EMBO J. 2000;19:1803–15.

    PubMed  CAS  Google Scholar 

  • Guo C, Tommasi S, Liu L, et al. RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats tumor-suppressor network. Curr Biol. 2007;17:700–5.

    PubMed  CAS  Google Scholar 

  • Habedanck R, Stierhof YD, Wilkinson CJ, et al. The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol. 2005;7:1140–6.

    PubMed  CAS  Google Scholar 

  • Hamilton G, Yee KS, Scrace S, et al. ATM regulates a RASSF1A-dependent DNA damage response. Curr Biol. 2009;19:2020–5.

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    PubMed  CAS  Google Scholar 

  • Hao Y, Chun A, Cheung K, et al. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008;283:5496–509.

    PubMed  CAS  Google Scholar 

  • Hergovich A. MOB control: reviewing a conserved family of kinase regulators. Cell Signal. 2011;23:1433–40.

    PubMed  CAS  Google Scholar 

  • Hergovich A, Hemmings BA. Mammalian NDR/LATS protein kinases in hippo tumor suppressor signaling. Biofactors. 2009;35:338–45.

    PubMed  CAS  Google Scholar 

  • Hergovich A, Hemmings BA. Hippo signalling in the G2/M cell cycle phase: lessons learned from the yeast MEN and SIN pathways. Semin Cell Dev Biol. 2012;23(7):794–802.

    PubMed  CAS  Google Scholar 

  • Hergovich A, Lamla S, Nigg EA, et al. Centrosome-associated NDR kinase regulates centrosome duplication. Mol Cell. 2007;25:625–34.

    PubMed  CAS  Google Scholar 

  • Hergovich A, Kohler RS, Schmitz D, et al. The MST1 and hMOB1 tumor suppressors control human centrosome duplication by regulating NDR kinase phosphorylation. Curr Biol. 2009;19:1692–702.

    PubMed  CAS  Google Scholar 

  • Hirota T, Morisaki T, Nishiyama Y, et al. Zyxin, a regulator of actin filament assembly, targets the mitotic apparatus by interacting with h-warts/LATS1 tumor suppressor. J Cell Biol. 2000;149:1073–86.

    PubMed  CAS  Google Scholar 

  • Hori T, Takaori-Kondo A, Kamikubo Y, et al. Molecular cloning of a novel human protein kinase, kpm, that is homologous to warts/lats, a Drosophila tumor suppressor. Oncogene. 2000;19:3101–9.

    PubMed  CAS  Google Scholar 

  • Hou MC, Guertin DA, McCollum D. Initiation of cytokinesis is controlled through multiple modes of regulation of the Sid2p-Mob1p kinase complex. Mol Cell Biol. 2004;24:3262–76.

    PubMed  CAS  Google Scholar 

  • Humbert N, Navaratnam N, Augert A, et al. Regulation of ploidy and senescence by the AMPK-related kinase NUAK1. EMBO J. 2010;29:376–86.

    PubMed  CAS  Google Scholar 

  • Hwa Lim H, Yeong FM, Surana U. Inactivation of mitotic kinase triggers translocation of MEN components to mother-daughter neck in yeast. Mol Biol Cell. 2003;14:4734–43.

    PubMed  Google Scholar 

  • Iida S, Hirota T, Morisaki T, et al. Tumor suppressor WARTS ensures genomic integrity by regulating both mitotic progression and G1 tetraploidy checkpoint function. Oncogene. 2004;23:5266–74.

    PubMed  CAS  Google Scholar 

  • Jiang Z, Li X, Hu J, et al. Promoter hypermethylation-mediated down-regulation of LATS1 and LATS2 in human astrocytoma. Neurosci Res. 2006;56:450–8.

    PubMed  CAS  Google Scholar 

  • Jiang L, Rong R, Sheikh MS, et al. Cullin-4A·DNA damage-binding protein 1 E3 ligase complex targets tumor suppressor RASSF1A for degradation during mitosis. J Biol Chem. 2011;286:6971–8.

    PubMed  CAS  Google Scholar 

  • Jiménez-Velasco A, Román-Gómez J, Agirre X, et al. Downregulation of the large tumor suppressor 2 (LATS2/KPM) gene is associated with poor prognosis in acute lymphoblastic leukemia. Leukemia. 2005;19:2347–50.

    PubMed  Google Scholar 

  • Kamikubo Y, Takaori-Kondo A, Uchiyama T, et al. Inhibition of cell growth by conditional expression of kpm, a human homologue of Drosophila warts/lats tumor suppressor. J Biol Chem. 2003;278:17609–14.

    PubMed  CAS  Google Scholar 

  • Ke H, Pei J, Ni Z, et al. Putative tumor suppressor Lats2 induces apoptosis through downregulation of Bcl-2 and Bcl-x(L). Exp Cell Res. 2004;298:329–38.

    PubMed  CAS  Google Scholar 

  • Lee KH, Goan YG, Hsiao M, et al. MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer. Exp Cell Res. 2009;315:2529–38.

    PubMed  CAS  Google Scholar 

  • Li Y, Pei J, Xia H, et al. Lats2, a putative tumor suppressor, inhibits G1/S transition. Oncogene. 2003;22:4398–405.

    PubMed  CAS  Google Scholar 

  • Li W, Wang L, Katoh H, et al. Identification of a tumor suppressor relay between the FOXP3 and the Hippo pathways in breast and prostate cancers. Cancer Res. 2011;71:2162–71.

    PubMed  CAS  Google Scholar 

  • Ling P, Lu TJ, Yuan CJ, et al. Biosignaling of mammalian Ste20-related kinases. Cell Signal. 2008;20:1237–47.

    PubMed  CAS  Google Scholar 

  • Mardin BR, Lange C, Baxter JE, et al. Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat Cell Biol. 2010;12:1166–76.

    PubMed  CAS  Google Scholar 

  • Mardin BR, Agircan FG, Lange C, et al. Plk1 controls the Nek2A-PP1γ antagonism in centrosome disjunction. Curr Biol. 2011;21:1145–51.

    PubMed  CAS  Google Scholar 

  • Matallanas D, Romano D, Hamilton G, et al. A Hippo in the ointment: MST signalling beyond the fly. Cell Cycle. 2008;7:879–84.

    PubMed  CAS  Google Scholar 

  • Matallanas D, Romano D, Al-Mulla F, et al. Mutant K-Ras activation of the proapoptotic MST2 pathway is antagonized by wild-type K-Ras. Mol Cell. 2011;44:893–906.

    PubMed  CAS  Google Scholar 

  • McPherson JP, Tamblyn L, Elia A, et al. Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity. EMBO J. 2004;23:3677–88.

    PubMed  CAS  Google Scholar 

  • Menssen R, Neutzner A, Seufert W. Asymmetric spindle pole localization of yeast Cdc15 kinase links mitotic exit and cytokinesis. Curr Biol. 2001;11:345–50.

    PubMed  CAS  Google Scholar 

  • Morisaki T, Hirota T, Iida S, et al. WARTS tumor suppressor is phosphorylated by Cdc2/cyclin B at spindle poles during mitosis. FEBS Lett. 2002;529:319–24.

    PubMed  CAS  Google Scholar 

  • Murakami H, Mizuno T, Taniguchi T, et al. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res. 2011;71:873–83.

    PubMed  CAS  Google Scholar 

  • Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol. 2001;2:21–32.

    PubMed  CAS  Google Scholar 

  • Nishiyama Y, Hirota T, Morisaki T, et al. A human homolog of Drosophila warts tumor suppressor, h-warts, localized to mitotic apparatus and specifically phosphorylated during mitosis. FEBS Lett. 1999;459:159–65.

    PubMed  CAS  Google Scholar 

  • Oh HJ, Kim MJ, Song SJ, et al. MST1 limits the kinase activity of aurora B to promote stable kinetochore-microtubule attachment. Curr Biol. 2010;20:416–22.

    PubMed  CAS  Google Scholar 

  • Okada N, Yabuta N, Suzuki H, et al. A novel Chk1/2-Lats2-14-3-3 signaling pathway regulates P-body formation in response to UV damage. J Cell Sci. 2011;124:57–67.

    PubMed  CAS  Google Scholar 

  • Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19:491–505.

    PubMed  CAS  Google Scholar 

  • Powzaniuk M, McElwee-Witmer S, Vogel RL, et al. The LATS2/KPM tumor suppressor is a negative regulator of the androgen receptor. Mol Endocrinol. 2004;18:2011–23.

    PubMed  CAS  Google Scholar 

  • Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol. 2008;18:311–21.

    PubMed  CAS  Google Scholar 

  • Rock JM, Amon A. Cdc15 integrates Tem1 GTPase-mediated spatial signals with Polo kinase-mediated temporal cues to activate mitotic exit. Genes Dev. 2011;25:1943–54.

    PubMed  CAS  Google Scholar 

  • Ruchaud S, Carmena M, Earnshaw WC. Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol. 2007;8:798–812.

    PubMed  CAS  Google Scholar 

  • Salaun P, Rannou Y, Prigent C. Cdk1, Plks, Auroras, and Neks: the mitotic bodyguards. Adv Exp Med Biol. 2008;617:41–56.

    PubMed  CAS  Google Scholar 

  • Sardon T, Pache RA, Stein A, et al. Uncovering new substrates for Aurora A kinase. EMBO Rep. 2010;11:977–84.

    PubMed  CAS  Google Scholar 

  • Shimizu T, Ho LL, Lai ZC. The mob as tumor suppressor gene is essential for early development and regulates tissue growth in Drosophila. Genetics. 2008;178:957–65.

    PubMed  CAS  Google Scholar 

  • Song SJ, Kim SJ, Song MS, et al. Aurora B-mediated phosphorylation of RASSF1A maintains proper cytokinesis by recruiting Syntaxin16 to the midzone and midbody. Cancer Res. 2009a;69:8540–4.

    PubMed  CAS  Google Scholar 

  • Song SJ, Song MS, Kim SJ, et al. Aurora A regulates prometaphase progression by inhibiting the ability of RASSF1A to suppress APC-Cdc20 activity. Cancer Res. 2009b;69:2314–23.

    PubMed  CAS  Google Scholar 

  • Sparks CA, Morphew M, McCollum D. Sid2p, a spindle pole body kinase that regulates the onset of cytokinesis. J Cell Biol. 1999;146:777–90.

    PubMed  CAS  Google Scholar 

  • St John MA, Tao W, Fei X, et al. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat Genet. 1999;21:182–6.

    PubMed  CAS  Google Scholar 

  • Stoepel J, Ottey MA, Kurischko C, et al. The mitotic exit network Mob1p-Dbf2p kinase complex localizes to the nucleus and regulates passenger protein localization. Mol Biol Cell. 2005;16:5465–79.

    PubMed  CAS  Google Scholar 

  • Storchova Z, Kuffer C. The consequences of tetraploidy and aneuploidy. J Cell Sci. 2008;121:3859–66.

    PubMed  CAS  Google Scholar 

  • Sudol M, Harvey KF. Modularity in the Hippo signaling pathway. Trends Biochem Sci. 2010;35:627–33.

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Miyoshi Y, Takahata C, et al. Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res. 2005;11:1380–5.

    PubMed  CAS  Google Scholar 

  • Takahashi A, Ohtani N, Yamakoshi K, et al. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol. 2006;8:1291–7.

    PubMed  CAS  Google Scholar 

  • Tao W, Zhang S, Turenchalk GS, et al. Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity. Nat Genet. 1999;21:177–81.

    PubMed  CAS  Google Scholar 

  • Toji S, Yabuta N, Hosomi T, et al. The centrosomal protein Lats2 is a phosphorylation target of Aurora-A kinase. Genes Cells. 2004;9:383–97.

    PubMed  CAS  Google Scholar 

  • Toyn JH, Johnston LH. The Dbf2 and Dbf20 protein kinases of budding yeast are activated after the metaphase to anaphase cell cycle transition. EMBO J. 1994;13:1103–13.

    PubMed  CAS  Google Scholar 

  • Tschöp K, Conery AR, Litovchick L, et al. A kinase shRNA screen links LATS2 and the pRB tumor suppressor. Genes Dev. 2011;25:814–30.

    PubMed  Google Scholar 

  • Vigneron AM, Ludwig RL, Vousden KH. Cytoplasmic ASPP1 inhibits apoptosis through the control of YAP. Genes Dev. 2010;24:2430–9.

    PubMed  CAS  Google Scholar 

  • Visser S, Yang X. LATS tumor suppressor: a new governor of cellular homeostasis. Cell Cycle. 2010;9:3892–903.

    PubMed  CAS  Google Scholar 

  • Vitale I, Galluzzi L, Senovilla L, et al. Illicit survival of cancer cells during polyploidization and depolyploidization. Cell Death Differ. 2011;18:1403–13.

    PubMed  CAS  Google Scholar 

  • Voorhoeve PM, le Sage C, Schrier M, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell. 2006;124:1169–81.

    PubMed  CAS  Google Scholar 

  • Wilmeth LJ, Shrestha S, Montaño G, et al. Mutual dependence of Mob1 and the chromosomal passenger complex for localization during mitosis. Mol Biol Cell. 2010;21:380–92.

    PubMed  CAS  Google Scholar 

  • Xia H, Qi H, Li Y, et al. LATS1 tumor suppressor regulates G2/M transition and apoptosis. Oncogene. 2002;21:1233–41.

    PubMed  CAS  Google Scholar 

  • Xiao L, Chen Y, Ji M, et al. KIBRA regulates Hippo signaling activity via interactions with large tumor suppressor kinases. J Biol Chem. 2011a;286:7788–96.

    PubMed  CAS  Google Scholar 

  • Xiao L, Chen Y, Ji M, et al. KIBRA protein phosphorylation is regulated by mitotic kinase aurora and protein phosphatase 1. J Biol Chem. 2011b;286:36304–15.

    PubMed  CAS  Google Scholar 

  • Yabuta N, Fujii T, Copeland NG, et al. Structure, expression, and chromosome mapping of LATS2, a mammalian homologue of the Drosophila tumor suppressor gene lats/warts. Genomics. 2000;63:263–70.

    PubMed  CAS  Google Scholar 

  • Yabuta N, Okada N, Ito A, et al. Lats2 is an essential mitotic regulator required for the coordination of cell division. J Biol Chem. 2007;282:19259–71.

    PubMed  CAS  Google Scholar 

  • Yabuta N, Mukai S, Okada N, et al. The tumor suppressor Lats2 is pivotal in Aurora A and Aurora B signaling during mitosis. Cell Cycle. 2011;10:2724–36.

    PubMed  CAS  Google Scholar 

  • Yamashita S, Yamamoto H, Mimori K, et al. MicroRNA-372 is associated with poor prognosis in colorectal cancer. Oncology. 2012;82:205–12.

    PubMed  CAS  Google Scholar 

  • Yang X, Li DM, Chen W, et al. Human homologue of Drosophila lats, LATS1, negatively regulate growth by inducing G(2)/M arrest or apoptosis. Oncogene. 2001;20:6516–23.

    PubMed  CAS  Google Scholar 

  • Yang X, Yu K, Hao Y, et al. LATS1 tumour suppressor affects cytokinesis by inhibiting LIMK1. Nat Cell Biol. 2004;6:609–17.

    PubMed  CAS  Google Scholar 

  • Yu J, Zheng Y, Dong J, et al. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell. 2010;18:288–99.

    PubMed  CAS  Google Scholar 

  • Zhang J, Smolen GA, Haber DA. Negative regulation of YAP by LATS1 underscores evolutionary conservation of the Drosophila Hippo pathway. Cancer Res. 2008;68:2789–94.

    PubMed  CAS  Google Scholar 

  • Zhang K, Rodriguez-Aznar E, Yabuta N, et al. Lats2 kinase potentiates Snail1 activity by promoting nuclear retention upon phosphorylation. EMBO J. 2011;31:29–43.

    PubMed  Google Scholar 

  • Zhao B, Wei X, Li W, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747–61.

    PubMed  CAS  Google Scholar 

  • Zhao B, Li L, Tumaneng K, et al. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24:72–85.

    PubMed  CAS  Google Scholar 

  • Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13:877–83.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Moshe Oren and Dr. Yael Aylon for inviting us to write this review. We also thank Dr. Patrick Hughes and Dr. Stephen Cooke (Bioedit Ltd.) for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nojima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yabuta, N., Nojima, H. (2013). Hippo in Cell Cycle and Mitosis. In: Oren, M., Aylon, Y. (eds) The Hippo Signaling Pathway and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6220-0_10

Download citation

Publish with us

Policies and ethics