Effects of Environmental Endocrine Disruptors and Phytoestrogens on the Kisspeptin System

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 784)

Abstract

Sex steroid hormones, most notably estradiol, play a pivotal role in the sex-specific organization and function of the kisspeptin system. Endocrine-­disrupting compounds are anthropogenic or naturally occurring compounds that interact with steroid hormone signaling. Thus, these compounds have the potential to disrupt the sexually dimorphic ontogeny and function of kisspeptin signaling pathways, resulting in adverse effects on neuroendocrine physiology. This chapter reviews the small but growing body of evidence for endocrine disruption of the kisspeptin system by the exogenous estrogenic compounds bisphenol A, polychlorinated biphenyl mixtures, and the phytoestrogen genistein. Disruption is region, sex, and compound specific, and associated with shifts in the timing of pubertal onset, irregular estrous cycles, and altered sociosexual behavior. These effects highlight that disruption of kisspeptin signaling pathways could have wide ranging effects across multiple organ systems, and potentially underlies a suite of adverse human health trends including precocious female puberty, idiopathic infertility, and metabolic syndrome.

Keywords

Estrogen Osteoporosis Nicotine Morphine Testosterone 

References

  1. 1.
    Herman-Giddens ME, Slora EJ, Wasserman RC, Bourdony CJ, Bhapkar MV, Koch GG et al (1997) Secondary sexual characteristics and menses in young girls seen in office practice: a study from the pediatric research in office settings network. Pediatrics 99(4):505–512PubMedCrossRefGoogle Scholar
  2. 2.
    Partsch CJ, Sippell WG (2001) Pathogenesis and epidemiology of precocious puberty. Effects of exogenous oestrogens. Hum Reprod Update 7(3):292–302PubMedCrossRefGoogle Scholar
  3. 3.
    Aksglaede L, Sorensen K, Petersen JH, Skakkebaek NE, Juul A (2009) Recent decline in age at breast development: the Copenhagen Puberty Study. Pediatrics 123(5):e932–e939PubMedCrossRefGoogle Scholar
  4. 4.
    Proos LA, Hofvander Y, Tuvemo T (1991) Menarcheal age and growth pattern of Indian girls adopted in Sweden. I. Menarcheal age. Acta Paediatr Scand 80(8–9):852–858PubMedCrossRefGoogle Scholar
  5. 5.
    Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP (2003) The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev 24(5):668–693PubMedCrossRefGoogle Scholar
  6. 6.
    Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM (2005) Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci U S A 102(6):2129–2134PubMedCrossRefGoogle Scholar
  7. 7.
    Brannian J, Hansen K (2006) Assisted reproductive technologies in South Dakota: the first ten years. S D Med 59(7):291–293PubMedGoogle Scholar
  8. 8.
    Nyboe Andersen A, Erb K (2006) Register data on assisted reproductive technology (ART) in Europe including a detailed description of ART in Denmark. Int J Androl 29(1):12–16PubMedCrossRefGoogle Scholar
  9. 9.
    Frey KA, Patel KS (2004) Initial evaluation and management of infertility by the primary care physician. Mayo Clin Proc 79(11):1439–43; quiz 43PubMedCrossRefGoogle Scholar
  10. 10.
    Decherf S, Demeneix BA (2011) The obesogen hypothesis: a shift of focus from the periphery to the hypothalamus. J Toxicol Environ Health B Crit Rev 14(5–7):423–448PubMedGoogle Scholar
  11. 11.
    Castellano JM, Bentsen AH, Mikkelsen JD, Tena-Sempere M (2010) Kisspeptins: bridging energy homeostasis and reproduction. Brain Res 1364:129–138PubMedCrossRefGoogle Scholar
  12. 12.
    Hotchkiss AK, Rider CV, Blystone CR, Wilson VS, Hartig PC, Ankley GT et al (2008) Fifteen years after "Wingspread"—environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicol Sci 105(2):235–259PubMedCrossRefGoogle Scholar
  13. 13.
    Colborn T, Clement C (1992) Chemically-induced alterations in sexual and functional development: the wildlife/human connection. Princeton Scientific, Princeton, NJGoogle Scholar
  14. 14.
    Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guillette LJ Jr et al (1996) Male reproductive health and environmental xenoestrogens. Environ Health Perspect 104(Suppl 4):741–803PubMedCrossRefGoogle Scholar
  15. 15.
    Crisp TM, Clegg ED, Cooper RL, Wood WP, Anderson DG, Baetcke KP et al (1998) Environmental endocrine disruption: an effects assessment and analysis. Environ Health Perspect 106(Suppl 1):11–56PubMedCrossRefGoogle Scholar
  16. 16.
    Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH et al (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33(3):378–455PubMedCrossRefGoogle Scholar
  17. 17.
    Gonzalez FJ, Nebert DW (1990) Evolution of the P450 gene superfamily: animal-plant ‘warfare’, molecular drive and human genetic differences in drug oxidation. Trends Genet 6(6):182–186PubMedCrossRefGoogle Scholar
  18. 18.
    Whitten PL, Naftolin F (1991) Dietary plant estrogens: a biologically active background for estrogen action. In: Hochberg RB, Naftolin F (eds) The new biology of steroid hormones. Raven, New York, pp 155–167Google Scholar
  19. 19.
    Patisaul HB, Jefferson W (2010) The pros and cons of phytoestrogens. Front Neuroendocrinol 31(4):400–419PubMedCrossRefGoogle Scholar
  20. 20.
    Leopold A, Erwin M, Oh J, Browning B (1976) Phytoestrogens: adverse effects on reproduction in California quail. Science 191(4222):98–100PubMedCrossRefGoogle Scholar
  21. 21.
    Setchell K, Gosselin S, Welsh M, Johnston J, Balisteri W, Kramer L et al (1987) Dietary estrogens-a probable cause of infertility and liver disease in captive cheetahs. Gastroenterology 93:225–233PubMedGoogle Scholar
  22. 22.
    Adams NR (1995) Detection of the effects of phytoestrogens on sheep and cattle. J Anim Sci 73:1509–1515PubMedGoogle Scholar
  23. 23.
    Adams NR (1995) Organizational and activational effects of phytoestrogens on the reproductive tract of the ewe. Proc Soc Exp Biol Med 208(1):87–91PubMedGoogle Scholar
  24. 24.
    Bennetts HW, Underwood EJ, Shier FL (1946) A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Aust Vet J 22:2PubMedCrossRefGoogle Scholar
  25. 25.
    Tubbs C, Hartig P, Cardon M, Varga N, Milnes M (2012) Activation of Southern White Rhinoceros (Ceratotherium simum simum) estrogen receptors by phytoestrogens: potential role in the reproductive failure of captive-born females? Endocrinology 153(3):1444–1452PubMedCrossRefGoogle Scholar
  26. 26.
    Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT et al (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139(10):4252–4263PubMedCrossRefGoogle Scholar
  27. 27.
    Dixon RA, Ferreira D (2002) Genistein. Phytochemistry 60(3):205–211PubMedCrossRefGoogle Scholar
  28. 28.
    Messina MJ, Persky V, Setchell KD, Barnes S (1994) Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer 21(2):113–131PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang Y, Chen H (2011) Genistein, an epigenome modifier during cancer prevention. Epigenetics 6(7):888–891PubMedCrossRefGoogle Scholar
  30. 30.
    Gang DR, Kasahara H, Xia ZQ, Van der Mijnsbrugge K, Bauw G, Boerjan W et al (1999) Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. J Biol Chem 274(11):7516–7527PubMedCrossRefGoogle Scholar
  31. 31.
    Bladergroen MR, Spaink HP (1998) Genes and signal molecules involved in the rhizobia-­leguminoseae symbiosis. Curr Opin Plant Biol 1(4):353–359PubMedCrossRefGoogle Scholar
  32. 32.
    Kessmann H, Edwards R, Geno PW, Dixon RA (1990) Stress responses in Alfalfa (Medicago sativa L.): V. Constitutive and elicitor-induced accumulation of isoflavonoid conjugates in cell suspension cultures. Plant Physiol 94(1):227–232PubMedCrossRefGoogle Scholar
  33. 33.
    D’Aloisio AA, Baird DD, DeRoo LA, Sandler DP (2010) Association of intrauterine and early-life exposures with diagnosis of uterine leiomyomata by 35 years of age in the Sister Study. Environ Health Perspect 118(3):375–381PubMedCrossRefGoogle Scholar
  34. 34.
    Strom BL, Schinnar R, Ziegler EE, Barnhart KT, Sammel MD, Macones GA et al (2001) Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. JAMA 286(7):807–814PubMedCrossRefGoogle Scholar
  35. 35.
    Frye C, Bo E, Calamandrei G, Calza L, Dessi-Fulgheri F, Fernandez M et al (2012) Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behavior and neuroendocrine systems. J Neuroendocrinol 24(1):144–159PubMedCrossRefGoogle Scholar
  36. 36.
    Swedenborg E, Pongratz I, Gustafsson JA (2010) Endocrine disruptors targeting ERbeta function. Int J Androl 33(2):288–297PubMedCrossRefGoogle Scholar
  37. 37.
    Gore AC (2008) Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems. Front Neuroendocrinol 29(3):358–374PubMedCrossRefGoogle Scholar
  38. 38.
    Handa RJ, Weiser MJ, Zuloaga DG (2009) A role for the androgen metabolite, ­5alpha-­androstane-3beta,17beta-diol, in modulating oestrogen receptor beta-mediated regulation of hormonal stress reactivity. J Neuroendocrinol 21(4):351–358PubMedCrossRefGoogle Scholar
  39. 39.
    Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL et al (2000) The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci 54(1):138–153PubMedCrossRefGoogle Scholar
  40. 40.
    Shanle EK, Xu W (2011) Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol 24(1):6–19PubMedCrossRefGoogle Scholar
  41. 41.
    Barkhem T, Carlsson B, Nilsson Y, Enmark E, Gustafsson J, Nilsson S (1998) Differential response of estrogen receptor alpha and estrogen receptor beta to partial estrogen agonists/antagonists. Mol Pharmacol 54(1):105–112PubMedGoogle Scholar
  42. 42.
    Dodds EC, Lawson W (1936) Synthetic estrogenic agents without the phenanthrene nucleus. Nature 137:996CrossRefGoogle Scholar
  43. 43.
    Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177PubMedCrossRefGoogle Scholar
  44. 44.
    Biedermann S, Tschudin P, Grob K (2010) Transfer of bisphenol A from thermal printer paper to the skin. Anal Bioanal Chem 398(1):571–576PubMedCrossRefGoogle Scholar
  45. 45.
    Cooper JE, Kendig EL, Belcher SM (2011) Assessment of bisphenol A released from reusable plastic, aluminium and stainless steel water bottles. Chemosphere 85(6):943–947PubMedCrossRefGoogle Scholar
  46. 46.
    Liao C, Kannan K (2011) Widespread occurrence of bisphenol A in paper an. paper products: implications for human exposure. Environ Sci Technol 45(21):9372–9379PubMedCrossRefGoogle Scholar
  47. 47.
    Geens T, Goeyens L, Covaci A (2011) Are potential sources for human exposure to bisphenol-­A overlooked? Int J Hyg Environ Health 214(5):339–347PubMedCrossRefGoogle Scholar
  48. 48.
    Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116(1):39–44PubMedCrossRefGoogle Scholar
  49. 49.
    vom Saal FS, Akingbemi BT, Belcher SM, Birnbaum LS, Crain DA, Eriksen M et al (2007) Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol 24(2):131–138PubMedCrossRefGoogle Scholar
  50. 50.
    Belcher SM, Chen Y, Yan S, Wang HS (2012) Rapid estrogen receptor-mediated mechanisms determine the sexually dimorphic sensitivity of ventricular myocytes to 17beta-estradiol and the environmental endocrine disruptor bisphenol a. Endocrinology 153(2):712–720PubMedCrossRefGoogle Scholar
  51. 51.
    Bonefeld-Jorgensen EC, Andersen HR, Rasmussen TH, Vinggaard AM (2001) Effect of highly bioaccumulated polychlorinated biphenyl congeners on estrogen and androgen receptor activity. Toxicology 158(3):141–153PubMedCrossRefGoogle Scholar
  52. 52.
    Stein J, Schettler T, Wallinga D, Valenti M (2002) In harm’s way: toxic threats to child development. J Dev Behav Pediatr 23(1 Suppl):S13–S22PubMedCrossRefGoogle Scholar
  53. 53.
    Adlercreutz H (1995) Phytoestrogens: epidemiology and a possible role in cancer protection. Environ Health Perspect 130(Suppl 7):103–112Google Scholar
  54. 54.
    UK-Committee-on-Toxicity (2003) Phytoestrogens and health. Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment, LondonGoogle Scholar
  55. 55.
    Setchell KD, Brown NM, Desai P, Zimmer-Nechemias L, Wolfe BE, Brashear WT et al (2001) Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J Nutr 131(4 Suppl):1362S–1375SPubMedGoogle Scholar
  56. 56.
    Setchell KDR, Zimmer-Nechemias L, Cai J, Heubi JE (1997) Exposure of infants to phyto-­oestrogens from soy-based infant formula. Lancet 350:23–27PubMedCrossRefGoogle Scholar
  57. 57.
    Setchell KD, Zimmer-Nechemias L, Cai J, Heubi JE (1998) Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life. Am J Clin Nutr 68:1453SPubMedGoogle Scholar
  58. 58.
    Todaka E, Sakurai K, Fukata H, Miyagawa H, Uzuki M, Omori M et al (2005) Fetal exposure to phytoestrogens—the difference in phytoestrogen status between mother and fetus. Environ Res 99(2):195–203PubMedCrossRefGoogle Scholar
  59. 59.
    Valentin-Blasini L, Blount BC, Caudill SP, Needham LL (2003) Urinary and serum concentrations of seven phytoestrogens in a human reference population subset. J Expo Anal Environ Epidemiol 13(4):276–282PubMedCrossRefGoogle Scholar
  60. 60.
    Adlercreutz H, Fotsis T, Watanabe S, Lampe J, Wahala K, Makela T et al (1994) Determination of lignans and isoflavonoids in plasma by isotope dilution gas chromatography–mass spectrometry. Cancer Detect Prev 18(4):259–271PubMedGoogle Scholar
  61. 61.
    Padmanabhan V, Siefert K, Ransom S, Johnson T, Pinkerton J, Anderson L et al (2008) Maternal bisphenol-A levels at delivery: a looming problem? J Perinatol 28(4):258–263PubMedCrossRefGoogle Scholar
  62. 62.
    Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I (2002) Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect 110(11):A703–A707PubMedCrossRefGoogle Scholar
  63. 63.
    Peeters PH, Slimani N, van der Schouw YT, Grace PB, Navarro C, Tjonneland A et al (2007) Variations in plasma phytoestrogen concentrations in European adults. J Nutr 137(5):1294–1300PubMedGoogle Scholar
  64. 64.
    Jacobson JL, Fein GG, Jacobson SW, Schwartz PM, Dowler JK (1984) The transfer of polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs) across the human placenta and into maternal milk. Am J Public Health 74(4):378–379PubMedCrossRefGoogle Scholar
  65. 65.
    Longnecker MP, Klebanoff MA, Brock JW, Zhou H (2001) Polychlorinated biphenyl serum levels in pregnant subjects with diabetes. Diabetes Care 24(6):1099–1101PubMedCrossRefGoogle Scholar
  66. 66.
    Engel SM, Levy B, Liu Z, Kaplan D, Wolff MS (2006) Xenobiotic phenols in early pregnancy amniotic fluid. Reprod Toxicol 21(1):110–112PubMedCrossRefGoogle Scholar
  67. 67.
    Foster WG, Chan S, Platt L, Hughes CL Jr (2002) Detection of phytoestrogens in samples of second trimester human amniotic fluid. Toxicol Lett 129(3):199–205PubMedCrossRefGoogle Scholar
  68. 68.
    Nagata C, Iwasa S, Shiraki M, Ueno T, Uchiyama S, Urata K et al (2006) Associations among maternal soy intake, isoflavone levels in urine and blood samples, and maternal and umbilical hormone concentrations (Japan). Cancer Causes Control 17(9):1107–1113PubMedCrossRefGoogle Scholar
  69. 69.
    Arai Y, Uehara M, Sato Y, Kimira M, Eboshida A, Adlercreutz H et al (2000) Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. J Epidemiol 10:127–135PubMedCrossRefGoogle Scholar
  70. 70.
    Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y (2002) Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 17(11):2839–2841PubMedCrossRefGoogle Scholar
  71. 71.
    Adlercreutz H, Yamada T, Wahala K, Watanabe S (1999) Maternal and neonatal phytoestrogens in Japanese women during birth. Am J Obstet Gynecol 180(3 Pt 1):737–743PubMedCrossRefGoogle Scholar
  72. 72.
    Ye X, Kuklenyik Z, Needham LL, Calafat AM (2006) Measuring environmental phenols and chlorinated organic chemicals in breast milk using automated on-line column-switching-high performance liquid chromatography-isotope dilution tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 831(1–2):110–115PubMedGoogle Scholar
  73. 73.
    Franke AA, Custer LJ (1996) Daidzein and genistein concentrations in human milk after soy consumption. Clin Chem 42(6):955–964PubMedGoogle Scholar
  74. 74.
    Franke AA, Halm BM, Custer LJ, Tatsumura Y, Hebshi S (2006) Isoflavones in breastfed infants after mothers consume soy. Am J Clin Nutr 84(2):406–413PubMedGoogle Scholar
  75. 75.
    Cao Y, Calafat AM, Doerge DR, Umbach DM, Bernbaum JC, Twaddle NC et al (2009) Isoflavones in urine, saliva, and blood of infants: data from a pilot study on the estrogenic activity of soy formula. J Expo Sci Environ Epidemiol 19(2):223–234PubMedCrossRefGoogle Scholar
  76. 76.
    Winter JSD, Hughes IA, Reyes FI, Faiman C (1976) Pituitary-gonadal relations in infancy: patterns of serum gonadal steroid concentrations in man from birth to two years of age. J Clin Endocrinol Metabol 42:679–686CrossRefGoogle Scholar
  77. 77.
    Farquharson RG, Klopper AI (1984) A study of maternal, retroplacental and umbilical cord estradiol levels in term infants delivered by caesarean section. Eur J Obstet Gynecol Reprod Biol 16(5):315–320PubMedCrossRefGoogle Scholar
  78. 78.
    Stricker R, Eberhart R, Chevailler MC, Quinn FA, Bischof P (2006) Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer. Clin Chem Lab Med 44(7):883–887PubMedCrossRefGoogle Scholar
  79. 79.
    Kim J, Semaan SJ, Clifton DK, Steiner RA, Dhamija S, Kauffman AS (2011) Regulation of Kiss1 expression by sex steroids in the amygdala of the rat and mouse. Endocrinology 152(5):2020–2030PubMedCrossRefGoogle Scholar
  80. 80.
    Wilson C (2011) Neuroendocrinology: Kiss1 expressed in the amygdala in rodents. Nat Rev Endocrinol 7(6):313PubMedCrossRefGoogle Scholar
  81. 81.
    Terao Y, Kumano S, Takatsu Y, Hattori M, Nishimura A, Ohtaki T et al (2004) Expression of KiSS-1, a metastasis suppressor gene, in trophoblast giant cells of the rat placenta. Biochim Biophys Acta 1678(2–3):102–110PubMedGoogle Scholar
  82. 82.
    Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K et al (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411(6837):613–617PubMedCrossRefGoogle Scholar
  83. 83.
    Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E et al (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276(37):34631–34636PubMedCrossRefGoogle Scholar
  84. 84.
    Castellano JM, Gaytan M, Roa J, Vigo E, Navarro VM, Bellido C et al (2006) Expression of KiSS-1 in rat ovary: putative local regulator of ovulation? Endocrinology 147(10):4852–4862PubMedCrossRefGoogle Scholar
  85. 85.
    Clarkson J, Boon WC, Simpson ER, Herbison AE (2009) Postnatal development of an estradiol-­kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology 150(7):3214–3220PubMedCrossRefGoogle Scholar
  86. 86.
    Clarkson J, Herbison AE (2006) Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147(12):5817–5825PubMedCrossRefGoogle Scholar
  87. 87.
    Cao J, Patisaul HB (2011) Sexually dimorphic expression of hypothalamic estrogen receptors alpha and beta and kiss1 in neonatal male and female rats. J Comp Neurol 519(15):2954–2977PubMedCrossRefGoogle Scholar
  88. 88.
    Losa SM, Todd KL, Sullivan AW, Cao J, Mickens JA, Patisaul HB (2010) Neonatal exposure to genistein adversely impacts the ontogeny of hypothalamic kisspeptin signaling pathways and ovarian development in the peripubertal female rat. Reprod Toxicol 31(3):280–289PubMedCrossRefGoogle Scholar
  89. 89.
    Kauffman AS (2009) Sexual differentiation and the Kiss1 system: hormonal and developmental considerations. Peptides 30(1):83–93PubMedCrossRefGoogle Scholar
  90. 90.
    Poling MC, Kauffman AS (2012) Sexually dimorphic testosterone secretion in prenatal and neonatal mice is independent of kisspeptin-Kiss1r and GnRH signaling. Endocrinology 153(2):782–793PubMedCrossRefGoogle Scholar
  91. 91.
    Navarro VM, Sanchez-Garrido MA, Castellano JM, Roa J, Garcia-Galiano D, Pineda R et al (2009) Persistent impairment of hypothalamic KiSS-1 system after exposures to estrogenic compounds at critical periods of brain sex differentiation. Endocrinology 150(5):2359–2367PubMedCrossRefGoogle Scholar
  92. 92.
    Kauffman AS, Gottsch ML, Roa J, Byquist AC, Crown A, Clifton DK et al (2007) Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology 148(4):1774–1783PubMedCrossRefGoogle Scholar
  93. 93.
    Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA (2005) Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 146(9):3686–3692PubMedCrossRefGoogle Scholar
  94. 94.
    Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA (2006) Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci 26(25):6687–6694PubMedCrossRefGoogle Scholar
  95. 95.
    Patisaul HB, Losa-Ward SM, Todd KL, McCaffrey KA, Mickens JA (2012) Influence of ERbeta selective agonism during the neonatal period on the sexual differentiation of the rat hypothalamic-pituitary-gonadal (HPG) axis. Biol Sex Differ 3(1):2PubMedCrossRefGoogle Scholar
  96. 96.
    Patisaul HB, Todd KL, Mickens JA, Adewale HB (2009) Impact of neonatal exposure to the ERalpha agonist PPT, bisphenol-A or phytoestrogens on hypothalamic kisspeptin fiber density in male and female rats. Neurotoxicology 30(3):350–357PubMedCrossRefGoogle Scholar
  97. 97.
    Gottsch ML, Navarro VM, Zhao Z, Glidewell-Kenney C, Weiss J, Jameson JL et al (2009) Regulation of Kiss1 and dynorphin gene expression in the murine brain by classical and nonclassical estrogen receptor pathways. J Neurosci 29(29):9390–9395PubMedCrossRefGoogle Scholar
  98. 98.
    Gorski RA, Mennin SP, Kubo K (1975) The neural and hormonal bases of the reproductive cycle of the rat. Adv Exp Med Biol 54:115–153PubMedCrossRefGoogle Scholar
  99. 99.
    Elkind-Hirsch K, King JC, Gerall AA, Arimura AA (1981) The luteinizing hormone-­releasing hormone (LHRH) system in normal and estrogenized neonatal rats. Brain Res Bull 7(6):645–654PubMedCrossRefGoogle Scholar
  100. 100.
    Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, vom Saal FS (1999) Exposure to bisphenol A advances puberty. Nature 401(6755):763–764PubMedCrossRefGoogle Scholar
  101. 101.
    Adewale HB, Jefferson WN, Newbold RR, Patisaul HB (2009) Neonatal bisphenol-A exposure alters rat reproductive development and ovarian morphology without impairing activation of gonadotropin releasing hormone neurons. Biol Reprod 81(4):690–699PubMedCrossRefGoogle Scholar
  102. 102.
    Birke LI (1984) Effects of estradiol and progesterone on scent-marking behavior of female rats. Horm Behav 18(1):95–98PubMedCrossRefGoogle Scholar
  103. 103.
    Cao J, Mickens JA, McCaffrey KA, Leyrer SM, Patisaul HB (2012) Neonatal bisphenol A exposure alters sexually dimorphic gene expression in the postnatal rat hypothalamus. Neurotoxicology 33(1):23–36PubMedCrossRefGoogle Scholar
  104. 104.
    Bai Y, Chang F, Zhou R, Jin PP, Matsumoto H, Sokabe M et al (2011) Increase of anteroventral periventricular kisspeptin neurons and generation of E2-induced LH-surge system in male rats exposed perinatally to environmental dose of bisphenol-A. Endocrinology 152(4):1562–1571PubMedCrossRefGoogle Scholar
  105. 105.
    Cortes R, Ceccatelli S, Schalling M, Hokfelt T (1990) Differential effects of intracerebroventricular colchicine administration on the expression of mRNAs for neuropeptides and neurotransmitter enzymes, with special emphasis on galanin: an in situ hybridization study. Synapse 6(4):369–391PubMedCrossRefGoogle Scholar
  106. 106.
    Plant TM, Ramaswamy S (2009) Kisspeptin and the regulation of the hypothalamic-­pituitary-gonadal axis in the rhesus monkey (Macaca mulatta). Peptides 30(1):67–75PubMedCrossRefGoogle Scholar
  107. 107.
    Lackmann GM (2002) Polychlorinated biphenyls and hexachlorobenzene in full-term neonates. Reference values updated. Biol Neonate 81:82–85PubMedCrossRefGoogle Scholar
  108. 108.
    Lackmann GM, Schaller KH, Angerer J (2004) Organochlorine compounds in breast-fed vs. bottle-fed infants: preliminary results at six weeks of age. Sci Total Environ 329(1–3):289–293PubMedCrossRefGoogle Scholar
  109. 109.
    Bentzen TW, Muir DC, Amstrup SC, O’Hara TM (2008) Organohalogen concentrations in blood and adipose tissue of Southern Beaufort Sea polar bears. Sci Total Environ 406(1–2):352–367PubMedCrossRefGoogle Scholar
  110. 110.
    Gladen BC, Doucet J, Hansen LG (2003) Assessing human polychlorinated biphenyl contamination for epidemiologic studies: lessons from patterns of congener concentrations in Canadians in 1992. Environ Health Perspect 111(4):437–443PubMedCrossRefGoogle Scholar
  111. 111.
    Dickerson SM, Cunningham SL, Gore AC (2011) Prenatal PCBs disrupt early neuroendocrine development of the rat hypothalamus. Toxicol Appl Pharmacol 252(1):36–46PubMedCrossRefGoogle Scholar
  112. 112.
    Dickerson SM, Cunningham SL, Patisaul HB, Woller MJ, Gore AC (2011) Endocrine disruption of brain sexual differentiation by developmental PCB exposure. Endocrinology 152(2):581–594PubMedCrossRefGoogle Scholar
  113. 113.
    Steinberg RM, Walker DM, Juenger TE, Woller MJ, Gore AC (2008) Effects of perinatal polychlorinated biphenyls on adult female rat reproduction: development, reproductive physiology, and second generational effects. Biol Reprod 78(6):1091–1101PubMedCrossRefGoogle Scholar
  114. 114.
    Steinberg RM, Juenger TE, Gore AC (2007) The effects of prenatal PCBs on adult female paced mating reproductive behaviors in rats. Horm Behav 51(3):364–372PubMedCrossRefGoogle Scholar
  115. 115.
    Lanting CI, Huisman M, Muskiet FA, van der Paauw CG, Essed CE, Boersma ER (1998) Polychlorinated biphenyls in adipose tissue, liver, and brain from nine stillborns of varying gestational ages. Pediatr Res 44(2):222–225PubMedCrossRefGoogle Scholar
  116. 116.
    Takagi Y, Aburada S, Hashimoto K, Kitaura T (1986) Transfer and distribution of accumulated (14C)polychlorinated biphenyls from maternal to fetal and suckling rats. Arch Environ Contam Toxicol 15(6):709–715PubMedCrossRefGoogle Scholar
  117. 117.
    Kriegsfeld LJ, Gibson EM, Williams WP 3rd, Zhao S, Mason AO, Bentley GE et al (2010) The roles of RFamide-related peptide-3 in mammalian reproductive function and behaviour. J Neuroendocrinol 22(7):692–700PubMedCrossRefGoogle Scholar
  118. 118.
    Tsutsui K, Bentley GE, Kriegsfeld LJ, Osugi T, Seong JY, Vaudry H (2010) Discovery and evolutionary history of gonadotrophin-inhibitory hormone and kisspeptin: new key neuropeptides controlling reproduction. J Neuroendocrinol 22(7):716–727PubMedGoogle Scholar
  119. 119.
    Bateman HL, Patisaul HB (2008) Disrupted female reproductive physiology following neonatal exposure to phytoestrogens or estrogen specific ligands is associated with decreased GnRH activation and kisspeptin fiber density in the hypothalamus. Neurotoxicology 29(6):988–997PubMedCrossRefGoogle Scholar
  120. 120.
    Setchell KD, Clerici C (2010) Equol: pharmacokinetics and biological actions. J Nutr 140(7):1363S–1368SPubMedCrossRefGoogle Scholar
  121. 121.
    Barker DJ (1997) Maternal nutrition, fetal nutrition, and disease in later life. Nutrition 13(9):807–813PubMedCrossRefGoogle Scholar
  122. 122.
    Heindel J, Lawler C (2006) Role of exposure to environmental chemicals in developmental origins of health and disease. In: Gluckman P, Hanson M (eds) Developmental origins of health and disease. Cambridge University Press, CambridgeGoogle Scholar
  123. 123.
    de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 100(19):10972–10976PubMedCrossRefGoogle Scholar
  124. 124.
    Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK et al (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349(17):1614–1627PubMedCrossRefGoogle Scholar
  125. 125.
    Clarkson J, d’Anglemont de Tassigny X, Moreno AS, Colledge WH, Herbison AE (2008) Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. J Neurosci 28(35):8691–8697PubMedCrossRefGoogle Scholar
  126. 126.
    Navarro VM, Castellano JM, Fernandez-Fernandez R, Barreiro ML, Roa J, Sanchez-Criado JE et al (2004) Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 145(10):4565–4574PubMedCrossRefGoogle Scholar
  127. 127.
    Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J et al (2005) Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A 102(5):1761–1766PubMedCrossRefGoogle Scholar
  128. 128.
    Losa-Ward SM, Todd KL, McCaffrey KA, Tsutsui K, Patisaul HB (2012) Disrupted organization of RFamide pathways in the hypothalamus is associated with advanced puberty in female rats neonatally exposed to bisphenol A. Biol Reprod 87(2):28PubMedCrossRefGoogle Scholar
  129. 129.
    Kauffman AS, Navarro VM, Kim J, Clifton D, Steiner RA (2009) Sex differences in the regulation of Kiss1/NKB neurons in juvenile mice: implications for the timing of puberty. Am J Physiol Endocrinol Metab 297(5):E1212–E1221PubMedCrossRefGoogle Scholar
  130. 130.
    Ubuka T, Morgan K, Pawson AJ, Osugi T, Chowdhury VS, Minakata H et al (2009) Identification of human GnIH homologs, RFRP-1 and RFRP-3, and the cognate receptor, GPR147 in the human hypothalamic pituitary axis. PLoS One 4(12):e8400PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of BiologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations