The Developmental Origins of Chronic Disease

  • David J. P. Barker
Part of the National Symposium on Family Issues book series (NSFI)


The search for the causes of chronic adult diseases and the way to ­prevent them has largely failed. For example, there are now 350 million people around the world who have type 2 diabetes. Hitherto, the search has been guided by a destructive model in which the causes to be identified are adverse environmental influences that act in adult life and accelerate processes associated with normal aging, such as hardening of the arteries and rising blood pressure. This model of causation has had limited success. Cigarette smoking and psychosocial stress go only a small way in explaining why one person lives a short life and another lives to old age. The recent discovery that people who develop coronary heart disease grew differently than other people in the womb and during childhood has led to a new “developmental” model for the disease. During development, adverse influences can permanently change the structure and function of the body, a phenomenon known as “programming.” Much of human development is completed during the first 1,000 days after conception—during intrauterine life and infancy. Prevention of chronic disease and an increase in healthy aging require improvement in the nutrition of girls and young women.


Coronary Heart Disease Birth Weight Sweat Gland Compensatory Growth Raise Blood Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barker, D. J. P. (1989). The rise and fall of Western diseases. Nature, 338, 371–372.CrossRefGoogle Scholar
  2. Barker, D. J. P. (1995). Fetal origins of coronary heart disease. British Medical Journal, 311, 171–174.CrossRefGoogle Scholar
  3. Barker, D. J. P., Eriksson, J. G., Forsén, T. F., & Osmond, C. (2002). Fetal origins of adult disease: Strength of effects and biological basis. International Journal of Epidemiology, 31, 1235–1239.CrossRefGoogle Scholar
  4. Barker, D. J. P., Forsén, T., Uutela, A., Osmond, C., & Eriksson, J. G. (2001). Size at birth and resilience to the effects of poor living conditions in adult life: Longitudinal study. British Medical Journal, 323, 1273–1276.CrossRefGoogle Scholar
  5. Barker, D. J. P., Gelow, J., Thornburg, K., Osmond, C., Kajantie, E., & Eriksson, J. G. (2010). The early origins of chronic heart failure: Impaired placental growth and initiation of insulin resistance in childhood. European Journal of Heart Failure, 12, 819–825.CrossRefGoogle Scholar
  6. Barker, D. J. P., Kajantie, E., Osmond, C., Thornburg, K. L., & Eriksson, J. G. (2011). How boys grow determines how long they live. American Journal of Human Biology, 23, 412–416.CrossRefGoogle Scholar
  7. Barker, D. J. P., Osmond, C., Forsén, T. F., Kajantie, E., & Eriksson, J. G. (2005). Trajectories of growth among children who have coronary events as adults. The New England Journal of Medicine, 353, 1802–1809.CrossRefGoogle Scholar
  8. Barker, D. J. P., Osmond, C., Winter, P. D., Margetts, B., & Simmonds, S. J. (1989). Weight in infancy and death from ischaemic heart disease. The Lancet, 2, 577–580.CrossRefGoogle Scholar
  9. Barker, D. J. P., Thornburg, K. L., Osmond, C., Kajantie, E., & Eriksson, J. G. (2010a). The prenatal origins of lung cancer. II. The placenta. American Journal of Human Biology, 22, 512–516.CrossRefGoogle Scholar
  10. Barker, D. J. P., Thornburg, K. L., Osmond, C., Kajantie, E., & Eriksson, J. G. (2010b). The surface area of the placenta and hypertension in the offspring in later life. International Journal of Developmental Biology, 54, 525–530.CrossRefGoogle Scholar
  11. Bateson, P., Barker, D. J. P., Clutton-Brock, T., Deb, D., D’Udine, B., Foley, R. A., et al. (2004). Developmental plasticity and human health. Nature, 430, 419–421.CrossRefGoogle Scholar
  12. Brenner, B. M., & Chertow, G. M. (1993). Congenital oligonephropathy: An inborn cause of adult hypertension and progressive renal injury? Current Opinion in Nephrology and Hypertension, 2, 691–695.CrossRefGoogle Scholar
  13. Brooks, A. A., Johnson, M. R., Steer, P. J., Pawson, M. E., & Abdalla, H. I. (1995). Birth weight: Nature or nurture? Early Human Development, 42, 29–35.CrossRefGoogle Scholar
  14. Burton, G. J., Barker, D. J. P., Moffett, A., & Thornburg, K. (Eds.). (2010). The placenta and human developmental programming. Cambridge: Cambridge University Press.Google Scholar
  15. Campbell, D. M., Hall, M. H., Barker, D. J. P., Cross, J., Shiell, A. W., & Godfrey, K. M. (1996). Diet in pregnancy and the offspring’s blood pressure 40 years later. British Journal of Obstetrics and Gynaecology, 103, 273–280.CrossRefGoogle Scholar
  16. Dubos, R. (1960). Mirage of Health. London: Allen & Unwin.Google Scholar
  17. Duggleby, S. L., & Jackson, A. A. (2001). Relationship of maternal protein turnover and lean body mass during pregnancy and birth length. Clinical Science, 101, 65–72.CrossRefGoogle Scholar
  18. Eriksson, J. G., Kajantie, E., Osmond, C., Thornburg, K., & Barker, D. J. P. (2010). Boys live dangerously in the womb. American Journal of Human Biology, 22, 330–335.CrossRefGoogle Scholar
  19. Eriksson, J. G., Kajantie, E., Thornburg, K. L., Osmond, C., & Barker, D. J. P. (2011). Mother’s body size and placental size predict coronary heart disease in men. European Heart Journal, 32, 2297–2303. doi: 10.1093/eurheartj/ehr147.CrossRefGoogle Scholar
  20. Fall, C. H. D., Stein, C. E., Kumaran, K., Cox, V., Osmond, C., & Barker, D. J. P. (1998). Size at birth, maternal weight, and type 2 diabetes in South India. Diabetic Medicine, 15, 220–227.CrossRefGoogle Scholar
  21. Floud, R., Fogel, R. W., Harris, B., & Hong, S. C. (2011). The changing body: Health, nutrition, and human development in the western world since 1700. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. Forsén, T., Eriksson, J., Tuomilehto, J., Reunanen, A., Osmond, C., & Barker, D. J. P. (2000). The fetal and childhood growth of persons who develop type 2 diabetes. Annals of Internal Medicine, 133, 176–182.CrossRefGoogle Scholar
  23. Forsén, T., Eriksson, J. G., Tuomilehto, J., Teramo, K., Osmond, C., & Barker, D. J. P. (1997). Mother’s weight in pregnancy and coronary heart disease in a cohort of Finnish men: Follow up study. British Medical Journal, 315, 837–840.CrossRefGoogle Scholar
  24. Frankel, S., Elwood, P., Smith, G. D., Sweetnam, P., & Yarnell, J. (1996). Birthweight, body mass index in middle age, and incident coronary heart disease. The Lancet, 348, 1478–1480.CrossRefGoogle Scholar
  25. Gluckman, P., & Hanson, M. (Eds.). (2006). Developmental origins of health and disease. Cambridge: Cambridge University Press.Google Scholar
  26. Hales, C. N., Barker, D. J. P., Clark, P. M., Cox, L. C., Fall, C., Osmond, C., & Winter, P. D. (1991). Fetal and infant growth and impaired glucose tolerance at age 64. British Medical Journal, 303, 1019–1022.CrossRefGoogle Scholar
  27. Harding, J. E. (2001). The nutritional basis of the fetal origins of adult disease. International Journal of Epidemiology, 30, 15–23.CrossRefGoogle Scholar
  28. Jackson, A. A. (2000). All that glitters. Nutrition Bulletin, 25, 11–24.CrossRefGoogle Scholar
  29. James, W. P. T. (1997). Long-term fetal programming of body composition and longevity. Nutrition Reviews, 55, S41–S43.Google Scholar
  30. Jansson, T., & Powell, T. L. (2007). Role of the placenta in fetal programming: Underlying mechanisms and potential interventional approaches. Clinical Science, 113, 1–13.CrossRefGoogle Scholar
  31. Kwong, W. Y., Wild, A., Roberts, P., Willis, A. C., & Fleming, T. P. (2000). Maternal undernutrition during the pre-implantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development, 127, 4195–4202.Google Scholar
  32. McCance, R. A. (1962). Food, growth and time. Lancet, 35, 621–626.CrossRefGoogle Scholar
  33. McCance, D. R., Pettitt, D. J., Hanson, R. L., Jacobsson, L. T. H., Knowler, W. C., & Bennett, P. H. (1994). Birth weight and non-insulin dependent diabetes: Thrifty genotype, thrifty phenotype, or surviving small baby genotype? British Medical Journal, 308, 942–945.CrossRefGoogle Scholar
  34. Metcalfe, N. B., & Monaghan, P. (2001). Compensation for a bad start: Grow now, pay later? Trends in Ecology and Evolution, 16, 254–260.CrossRefGoogle Scholar
  35. Osmond, C., Barker, D. J. P., Winter, P. D., Fall, C. H. D., & Simmonds, S. J. (1993). Early growth and death from cardiovascular disease in women. British Medical Journal, 307, 1519–1524.CrossRefGoogle Scholar
  36. Phillips, D. I. W. (1996). Insulin resistance as a programmed response to fetal undernutrition. Diabetologia, 39, 1119–1122.CrossRefGoogle Scholar
  37. Ravelli, A. C. J., van der Meulen, J. H. P., Michels, R. P. J., Osmond, C., Barker, D. J. P., Hales, C. N., & Bleker, O. P. (1998). Glucose tolerance in adults after prenatal exposure to famine. Lancet, 351, 173–177.CrossRefGoogle Scholar
  38. Roseboom, T. J., van der Meulen, J. H., van Montfrans, G. A., Ravelli, A. C., Osmond, C., Barker, D. J. P., & Bleker, O. P. (2001). Maternal nutrition during gestation and blood pressure in later life. Journal of Hypertension, 19, 29–34.CrossRefGoogle Scholar
  39. Rush, D. (1989). Effects of changes in maternal energy and protein intake during pregnancy, with special reference to fetal growth. In F. Sharp, R. B. Fraser, & R. D. G. Milner (Eds.), Fetal growth (pp. 203–233). London: Royal College of Obstetricians and Gynaecologists.CrossRefGoogle Scholar
  40. Shiell, A. W., Campbell-Brown, M., Haselden, S., Robinson, S., Godfrey, K. M., & Barker, D. J. P. (2001). A high meat, low carbohydrate diet in pregnancy: Relation to adult blood pressure in the offspring. Hypertension, 38, 1282–1288.CrossRefGoogle Scholar
  41. Silverman, B. L., Purdy, L. P., & Metzger, B. E. (1996). The intrauterine environment: Implications for the offspring of diabetic mothers. Diabetes Reviews, 4, 21–35.Google Scholar
  42. Stein, C. E., Fall, C. H. D., Kumaran, K., Osmond, C., Cox, V., & Barker, D. J. P. (1996). Fetal growth and coronary heart disease in South India. The Lancet, 348, 1269–1273.CrossRefGoogle Scholar
  43. Walker, S. K., Hartwick, K. M., & Robinson, J. S. (2000). Long-term effects on offspring of exposure of oocytes and embryos to chemical and physical agents. Human Reproduction Update, 6, 564–567.CrossRefGoogle Scholar
  44. West-Eberhard, M. J. (2003). Developmental plasticity in evolution. Oxford: Oxford University Press.Google Scholar
  45. Widdowson, E. M., & McCance, R. A. (1963). The effect of finite periods of undernutrition at different ages on the composition and subsequent development of the rat. Proceedings of the Royal Society B: Biological Sciences, 158, 329–342.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • David J. P. Barker
    • 1
  1. 1.Heart Research CenterOregon Health and Science UniversityPortlandUSA

Personalised recommendations