Abstract
The role of the androgen receptor (AR) signaling axis in the progression of prostate cancer is a cornerstone to our understanding of the molecular mechanisms behind this important disease. Understanding the innate signaling axis of the AR and the aberrations of this axis in progression of prostate cancer has facilitated the development of emerging therapeutic interventions. Furthermore, the crosstalk of AR with other critical signaling pathways may explain the advancement of prostate cancer to metastatic castration-resistant prostate cancer (CRPC). Of particular interest to such crosstalk are the pathways associated with epithelial to mesenchymal transition (EMT). The reactivation of EMT is a hallmark of metastatic cancer spread, and recent evidence suggests the involvement of AR in the signaling pathways regulating EMT. Cadherin switching, EMT inducing transcription factors, Wnt, TGF-β, and Notch signaling can all be modulated by crosstalk with the AR. Overexpression and localization of the AR to the nucleus has been associated with reactivation of the androgenic signaling axis and progression to metastatic CRPC in patients. In this chapter we consider the current understanding of the functional exchanges between the androgen signaling championed by AR activity and key growth factor signaling pathways that impact EMT towards prostate cancer progression to metastatic CRPC and we discuss the clinical relevance of these insights in the effective targeting of advanced disease.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- CRPC:
-
Castration-resistant prostate cancer
- ADT:
-
Androgen deprivation therapy
- EMT:
-
Epithelial–mesenchymal transition
- TGF-β:
-
Transforming growth factor-β
- DHT:
-
Dihydrotestosterone
- ARE:
-
Androgen-responsive elements
- PSA:
-
Prostate-specific antigen
References
Huggins C, Hodges CV (1941) Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatase in metastatic carcinoma of the prostate. Cancer Res 1:293–297
Freedland SJ, Moul JW (2007) Prostate specific antigen recurrence after definitive therapy. J Urol 177(6):1985–1991
Hu R, Denmeade SR, Luo J (2010) Molecular processes leading to aberrant androgen receptor signaling and castration resistance in prostate cancer. Expert Rev Endocrinol Metab 5(5):753–764
Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10(1):33–39
Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev 1:34–45
Knudsen KE, Penning T (2010) Partners in crime: deregulation of AR activity and androgen synthesis in prostate cancer. Trends Endocrinol Metab 21(5):315–324
Matuszak EA, Kyprianou N (2011) Androgen regulation of epithelial-mesenchymal transition in prostate tumorigenesis. Expert Rev Endocrinol Metab 6(3):469–482
Gelmann EP (2002) Molecular biology of the androgen receptor. J Clin Oncol 13:3001–3015
Lonergan PE, Tindall DJ (2011) Androgen receptor signaling in prostate cancer development and progression. J Carcinog 10(20):1–12
Schmidt LJ, Tindall DJ (2011) Steroid 5 alpha reductase inhibitors targeting BPH and prostate cancer. J Steroid Biochem Mol Biol 125:32–38
Wilson JD (2001) The role of 5 alpha-reduction in steroid hormone physiology. Reprod Fertil Dev 13:673–678
Brinkmann AO, Blok LJ, de Ruiter PE, Doesburg P, Steketee K, Berrevoets CA, Trapman J (1999) Mechanisms of androgen receptor activation and function. J Steroid Biochem Mol Biol 69(1):307–313
Nazareth LV, Weigel NL (1996) Activation of the human androgen receptor through a protein kinase A signaling pathway. J Biol Chem 271:19900–19907
Feng J, Zheng SL, Wennuan L, Isaacs WB, Xu J (2011) Androgen receptor signaling in prostate cancer: new twists for an old pathway. Steroids Horm Sci S2:1–7
Heinlein CA, Chang C (2002) Androgen receptor (AR) coregulators: an overview. Endocr Rev 23:175–200
Roy AK, Lavrosky Y, Song CS (1999) Regulations of androgen action. Vitam Horm 55:309–352
Jenster G, van der Korput HAGM, Trapman J, Brinkmann AO (1995) Identification of two transcription activation units in the N-terminal domain of the human androgen receptor. J Biol Chem 270(13):7341–7346
Dehm SM, Regan KM, Schmidt LJ, Tindall DJ (1989) Selective role for an NH2-terminal WxxLF motfi for aberrant androgen receptor activation in androgen depletion independent prostate cancer cells. Cancer Res 67:10067–10077
Simental JA, Sar M, Lane MV, French FS, Wilson EM (1991) Transcriptional activation and nuclear targeting signals of the human androgen receptor. J Biol Chem 266(1):510–518
Umesono K, Evans RM (1989) Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57:1139–1146
van Royen ME, van Cappellen WA, de Vos C, Houtsmuller AB, Trapman J (2012) Stepwise androgen receptor dimerization. J Cell Sci 125:1970–9
Zhou ZX, Sar M, Simental JA, Lane MV, Wilson EM (1994) A ligand dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by the NH2 terminal and carboxyl-terminal sequences. J Biol Chem 269(18):13115–13123
Haelens A, Tanner T, Denayer S, Callewaert L, Claessens F (2007) The hinge region regulates DNA binding, nuclear translocation, and transactivation of the androgen receptor. Cancer Res 67(9):4514–4523
Robinson-Rechavi M, Escriva GH, Laudet V (2003) The nuclear receptor superfamily. J Cell Sci 116:585–586
Ozanne DM, Brady ME, Cook S, Gaughan L, Neal DE, Robson CN (2000) Androgen receptor nuclear translocation is facilitated by the f-actin cross linking protein filamin. Mol Endocrinol 14:1618–1626
McKenna NJ, Lanz RB, O’Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20:321–344
Poukka H, Karvonen U, Yoshikawa N, Tanaka H, Palvimo JJ, Janne OA (2000) The RING finger protein SNURF modulates nuclear trafficking of the androgen receptor. J Cell Sci 113:2991–3001
Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360
Xu L, Glass CK, Rosenfeld MG (1999) Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 9:140–147
Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736
Chan SC, Li Y, Dehm SM (2012) Androgen receptor splice variants activate AR target genes and support aberrant prostate cancer cell growth independent of the canonical AR nuclear localization signal. J Biol Chem 287:19736–49
Black BE, Paschal BM (2004) Intranuclear organization and function of the androgen receptor. Trends Endocrinol Metab 15:411–417
Brodsky AS, Silver PA (1999) Nuclear transport HEATs up. Nat Cell Biol 1:E66–E67
Corbett AH, Silver PA (1997) Nucleocytoplasmic transport of macromolecules. Microbiol Mol Biol Rev 61:193–211
Cutress ML, Whitaker HC, Mills IG, Stewart M, Neal DE (2008) Structural basis for the nuclear import of the human androgen receptor. J Cell Sci 121:957–968
Gorlich D (1997) Nuclear protein import. Curr Opin Cell Biol 9:412–419
Nigg EA (1997) Nucleocytoplasmic transport: signals, mechanisms, and regulation. Nature 386:779–787
Picard D, Yamamoto KR (1987) Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J 6:3333–3340
Savory JGA, Hsu B, Laquian IR, Giffin W, Reich T, Hache RJG, Lefebvre YA (1999) Discrimination between NL1- and NL2- mediated nuclear localization of the glucocorticoid receptor. Mol Cell Biol 19:1025–1037
Loy CJ, Sim KS, Yong EL (2003) Filamin-A fragment localizes to the nucleus to regulate androgen recepto and coactivator functions. Proc Natl Acad Sci USA 100(8):4562–4567
Koteliansky VE, Shirinsky V, Gneushev GN, Smirnov VN (1981) Filamin, a relative high molecular mass actin-binding protein from smooth muscles, promotes actin polymerization. FEBS Lett 136:98–100
Darshan MS, Loftus MS, Thadani-Mulero M, Levy BP, Escuin DE, Zhou XK, Gjurezi A, Chanel-Vos C, Shen R, Tagawa ST, Bander NH, Nanus DM, Giannakakou P (2011) Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res 15:6019–6029
Heemers HV, Tindall DJ (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 28(7):778–808
Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS, Ma AAK, Miner JN, Diamond MI (2005) The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions. Proc Natl Acad Sci USA 102:9802–9807
Van Royen ME, Cunha SM, Brink MC, Mattern KA, Nigg AL, Dubbink HJ, Verschure PJ, Trapman J, Houtsmuller AB (2007) Compartmentalization of androgen receptor protein–protein interactions in living cells. J Cell Biol 177:63–72
Gregory CW, Raymond TJ, Mohler JL, French FS, Wilson EM (2001) Androgen receptor stabilization in recurrent prostate cancer is associated with hypersenstivity to low androgen. Cancer Res 61:2892–2898
Marcelli M, Ittmann M, Mariani S, Sutherland R, Nigam R, Murthy L, Zhao Y, DiConcini D, Puxeddu E, Esen A, Eastham J, Weigel NL, Lamb DJ (2000) Androgen receptor mutations in prostate cancer. Cancer Res 60:944–951
Taplin ME, Bubley GJ, Ko Y-J, Small EJ, Upton MP, Rajeshkumar BR, Balk SP (2001) Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59:2511–2515
Tilley WD, Buchanan G, Hickey TE, Bentel JM (1996) Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin Cancer Res 2:277–285
Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ (2008) Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68:5469–5477
Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, Chen H, Kong X, Melamed J, Tepper CG, Kung H-J, Brodie AMH, Edwards J, Qiu Y (2009) A novel androgen receptor splice variant is upregulated during prostate cancer progression and promotes androgen-depletion-resistant growth. Cancer Res 69(6):2305–2313
Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, Han M, Partin AW, Vessella RL, Isaacs WB, Bova GS, Luo J (2009) Ligand independent androgen receptor variants derived from splicing of cryptic exons signify hormone refractory prostate cancer. Cancer Res 69(1):16–22
Hu R, Isaacs WB, Luo J (2010) A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate 71(15):1656–1667
Sun S, Sprenger CCT, Vessella RL, Haugk K, Soriano K, Mostaghel EA, Page ST, Coleman IM, Nguyen HM, Sun H, Nelson PS, Plymate SR (2010) Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 120(8):2715–2730
Craft N, Shostak Y, Carey M, Sawyers CL (1999) A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the Her-2/neu tyrosine kinase. Nat Med 5:280–285
Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hattmair A, Bartsch G, Klocker H (1994) Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, kertinocyte growth factor, and epidermal growth factor. Cancer Res 54:5474–5478
Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast and prostate cancer. Science 275:1943–1947
Locke J, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA, Ettinger SI, Gleave ME, Nelson CC (2008) Androgen levels increase by intratumoral de novo steroidogenesis during the progression of castration-resistant prostate cancer. Cancer Res 68:6407–6414
Montgomery RBMEA, Vessella R, Hess DL, Kalhorn TF, Higano CS, True LD, Nelson PS (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration resistant tumor growth. Cancer Res 68:4447–4454
Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, Febbo PG, Balk SP (2006) Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66:2815–2825
Colombel M, Symmans F, Gil S, O’Toole KM, Chopin D, Benson M, Olsson CA, Korsmeyer S, Buttyan R (1993) Detection of the apoptosis-suppressing oncoprotein bcl-2 in hormone-refractory human prostate cancer. Am J Pathol 143(8):390–400
Liu AY, Corey E, Bladou F, Lange PH, Vessella RL (1996) Prostatic cell lineage markers: emergence of Bcl2+ cells of human prostate cancer xenograft LuCaP23 following castration. Int J Cancer 65:85–89
Huizing MT, Misser VHS, Pieters RC, ten Bokkel Huinink WW, Veenhof CHN, Vermorken JB, Pinedo HM, Beijnen JH (1995) Taxanes: a new class of antitumor agents. Cancer Invest 13(4):381–404
Kraus LA, Samuel SK, Schmid SM, Dykes DJ, Waud WR, Bissery MC (2003) The mechanism of action of docetaxel (Taxotere) in xenograft models is not limited to bcl-2 phosphorylation. Invest New Drugs 21:259–268
Bruckheimer EM, Kyprianou N (2001) Dihydrotestosterone enhances transforming growth factor beta induced apoptosis in hormone sensitive prostate cancer cells. Endocrinology 142:2419–2426
Bruckheimer EM, Kyprianou N (2002) BCL-2 antagonizes the combined apoptotic effect of transforming growth factor-beta and dihydrotestosterone in prostate cancer cells. Prostate 53:133–142
Debes JD, Tindall DJ (2004) Mechanisms of androgen refractory prostate cancer. N Engl J Med 351:1488–1490
Oliver CL, Miranda MB, Shangary S, Land S, Wang S, Johnson DE (2005) (−−)—Gossypol acts directly on the mitochondria to overcome Bcl-2 and Bcl-X(L) mediated apoptosis resistance. Mol Cancer Ther 4:23–31
Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Theodore C, James ND, Turesson I, Rosenthal MA, Eisenberger MA (2004) Docetaxel plus prednisone or mitoxantrone and prednisone for advanced prostate cancer. N Engl J Med 351:1502–1512
Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF (2008) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol 26:242–245
Petrylak DP, Tangen CM, Hussain MH, Lara PN, Jones JA, Taplin ME, Burch PA, Berry D, Moinpour C, Kohli M, Benson MC, Small EJ, Raghavan D, Crawford ED (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513–1520
Zhu M-L, Horbinski CM, Garzotto M, Qian DZ, Beer TM, Kyprianou N (2010) Tubulin-targeting chemotherapy impairs androgen recepto activity in prostate cancer. Cancer Res 70(20):7992–8002
Abdulla A, Kapoor A (2011) Emerging novel therapies in the treatment of castrate-resistant prostate cancer. CUAJ 5(2):120–133
Attard G, Greystroke A, Kaye S, De Bono J (2006) Update on tubulin targeting agents. Pathol Biol (Paris) 54:72–84
Sartor AO (2011) Progression of metastatic castrate-resistant prostate cancer: impact of therapeutic inervention in the post-docetaxel space. J Hematol Oncol 4(18):1–7
Galsky MD, Dritselis A, Kirkpatrick P, Oh WK (2010) Cabazitaxel. Nat Rev Drug Discov 9:677–678
Di Lorenzo G, Buonerba C, De Placido S, Sternberg CN (2010) Castration-resistant prostate cancer: current and emerging treatment strategies. Drugs 70(8):983–1000
De Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, Gravis G, Bodrogi I, Mackenzie MJ, Shen L, Roessner M, Gupta S, Sartor AO (2010) Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376:1147–1154
Walcak JR, Carducci MA (2007) Prostate cancer: a practical approach to current management of recurrent disease. Mayo Clin Proc 82:243–249
De Bono JS, Logothetis CJ, Fizazi K, North S, Chu L, Chi KN, Kheoh T, Haqq C, Molina A, Scher HI (2010) Abiraterone acetate (AA) plus low dose prednisone (P) improves overall survival in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) who have progressed after docetaxel-based chemotherapy (chemo): Results of COU-AA-301 [abstract]. In: Presidential symposium at ESMO, Milan, Italy
Shen HC, Balk SP (2009) Development of androgen recepto antagonists with promising activing in castration-resistant prostate cancer. Cancer Cell 15(6):461–463
Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstanthiou E, Ratjkopf D, Shelkey J, Yu EY, Alumkal J, Hung D, Hirmand M, Seely L, Morris MJ, Danila DC, Humm J, Larson S, Fleisher M, Sawyers CL (2010) Antitumor activity of MDV3100 in castration resistant prostate cancer: a phase 1–2 study. Lancet 375:1437–1446
Vishnu P, Tan WW (2010) Update on option for treatment of metastatic castration-resistant prostate cancer. Onco Targets Ther 3:39–51
Attard G, Cooper CS, de Bono JS (2009) Steroid hormone receptors in prostate cancer: a hard habit to break? Cancer Cell 16:458–462
Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, Wongvipat J, Smith-Jones PM, Yoo D, Kwon A, Wasielewska T, Welsbie D, Chen CD, Higano CS, Beer TM, Hung DT, Scher HI, Jung ME, Sawyers CL (2009) Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324:787–790
Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A, Kim K, Sawyers CL (2010) Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full length androgen receptor. Proc Natl Acad Sci USA 107:16759–16765
Massard C, Fizazi K (2011) Targeting continued androgen receptor signaling in prostate cancer. Clin Cancer Res 17(12):3876–3883
Ferte C, Andre F, Soria JC (2010) Molecular circuits of solid tumors: prognostic and predictive tools for bedside use. Nat Rev Clin Oncol 7:367–380
Bolton EC, So AY, Chaivorapol C, Haqq CM, Li H, Yamamoto KR (2007) Cell- and gene- specific regulation of primary target genes by the androgn receptor. Genes Dev 21:2005–2017
Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L, Ryan C, Smith S, Scher H, Scardino P, Reuter V, Gerald WL (2004) Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen responsive-genes and mechansims of therapy resistance. Am J Pathol 164(1):217–227
Vellaichamy A, Dezso Z, JeBailey L, Chinnaiyan AM, Sreekumar A, Nesvizhskii AI, Omenn GS, Bugrim A (2010) “Topological significance” analysis of gene expression and proteomic profiles from prostate camcer cells reveal key mechanisms of androgen response. PLoS One 5(6):1–10
Greenburg G, Hay ED (1982) Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol 95(1):333–339
Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28:15–33
Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428
Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119(6):1438–1449
Barrallo-Gimeno A, Nieto MA (2005) The Snail genes act as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161
Moreno-Bueno G, Portillo F, Cano A (2008) Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27:6958–6969
Peindao H, Olmeda D, Cano A (2007) Snail, Zeb, bHLH factors in tumor progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7:415–428
Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119(6):1417–1419
Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890
Yang J, Weinberg R (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14(6):818–829
Haraguchi M, Okubo T, Miyashita Y, Miyamoto Y, Hayashi M, Crotti TN, McHugh KP, Ozawa M (2008) Snail regulates cell-matrix adhesion by regulation of the expression of integrins and basement membrane proteins. J Biol Chem 283:23514–23523
Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558
Zhu M-L, Kyprianou N (2010) Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. FASEB J 24:769–777
Sun Y, Wang B-E, Leong KG, Yue P, Li L, Jhunjhunwala S, Chen D, Seo K, Modrusan Z, Gao W-Q, Settleman J, Johnson L (2011) Androgen deprivation causes epithelial-mesenchymal transtition in the prostate: Implications for androgen-deprivation therapy. Cancer Res 72(2):527–536
Tanaka H, Kono E, Tran CP, Miyazaki H, Yamashiro J, Shimomura T (2010) Monoclonal antibody targeting of N-Cadherin inhibits prostate cancer growth, metastasis, and castration resistance. Nat Med 16:1414–1420
Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303(5663):1483–1487. doi:10.1126/science.1094291
Thiery JP (2002) Epithelial-mesenchymal transition in tumour progression. Nat Rev Cancer 2:442–454
Thiery JP (2003) Epithelial -mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15:740–746
Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Rev Mol Cell Bio 11(7):502–514
Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA (2007) A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res 13(23):7003–7011
Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumour progression? Oncogene 27(55):6920–6929
Baritaki S, Chapman A, Yeung K, Spandidos DA, Palladino M, Bonavida B (2009) Inhibition of epithelial to mesenchymal transition in metastatic prostate cancer cells by the novel proteasome inhibitor, NPI-0052: pivotal roles of Snail repression and RKIP induction. Oncogene 28:3573–3585
Liu YN, Liu Y, Lee HJ, Hsu YH, Chen JH (2008) Activated androgen receptor downregulates E-cadherin gene expression and promotes tumor metastasis. Mol Cell Biol 28(23):7096–7108
Anose BM, Sanders MM (2011) Androgen receptor regulates transcription of the ZEB1 transcription factor. Int J Endocrinol 2011:1–10
Brabletz S, Brabletz T (2010) The ZEB/miR-200 feedback loop-a motor of cellular plasticity in development and cancer? EMBO Rep 11(9):670–677
Hidaka T, Nakahata S, Hatakeyama K (2008) Down regulation of TCF8 is involved in leukemogenesis of adult T-cell leukemia lymphoma. Blood 112(2):383–393
Saykally JN, Dogan MP, Cleary MP, Sanders MM (2009) The ZEB1 transcription factor is a novel repressor of adiposity in female mice. PLoS One 4(12):1–12
Drake JM, Strohbehn G, Bair TB, Moreland JG, Henry MD (2009) ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol Biol Cell 20:2207–2217
Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, Hlubek F, Jung A, Strand D, Eger A, Kirchner T, Behrens J, Brabletz T (2008) The transcriptional repressor ZEB1 promoters metastasis and loss of cell polarity in cancer. Cancer Res 68:537–544
Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F (2001) The two handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278
Chamberlain EM, Sanders MM (1999) Identification of the novel player delta EF1 in estrogen transcriptional cascades. Mol Cell Biol 19(5):3600–3606
Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB (2002) Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem 277(7):5209–5218
Graham TR, Yacoub R, Taliafero-Smith L (2010) Reciprocal regulation of EB1 and AR in triple negative breast cancer cells. Breast Cancer Res Treat 123(1):139–147
Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RGAB, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629
Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, Salvesen HB, Otte AP, Akslen LA (2006) EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. Oncol 24:268–273
Laitinen S, Martikainen PM, Tolonen T, Isola J, Tammela TLJ, Visakorpi T (2008) EZH2, Ki-67, and Mcm7 are prognostic markers in prostatectomy treated patients. Int J Cancer 122:595–602
Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24:1967–2000
Li J, Fan QH, Fan XS (2010) EZH2 expression in human prostate cacner and its clinicopathologic significance. Natl J Androl 16:123–128
Cao Q, Yu J, Dhanasekaran SM, Kim HJ, Mani RS, Tomlins SA, Mehra R, Laxman B, Cao X, Kleer CG (2008) Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27:7274–7284
Chen H, Tu SW, Hsieh JT (2005) Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J Biol Chem 280:22437–22444
Hermans KG, van Marion R, van Dekken H, Jenster G, van Weerden WM, Trapman J (2006) TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage andgrogen receptor-negative prostate cancer. Cancer Res 66:10658–10663
Nam RK, Sugar L, Wang Z, Kitching R, Klotz LH, Venkateswaran V, Narod SA, Seth A (2007) Expression of TMPRSS2:ERG gene fusions in prostate cancer cells is an important prognostic factor for cancer progression. Cancer Biol Ther 6:e1–e6
Narod SA, Seth A, Nam R (2008) Fusion in the ETS gene family and prostate cancer. Br J Cancer 99:847–851
Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM, Setlur S, Tchinda J, Tomlins SA, Hofer MD, Pienta KG, Kuefer R, Vessella R, Sun XY, Meyerson M, Lee C, Sellers WR, Chinnaiyan AM, Rubin MA (2006) TMPRSS2:ERG fusion associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 66:8337–8341
Rajput AB, Miller MA, De Luca A, Boyd N, Leung S, Hurtado-Coll A, Fazli L, Jones EC, Palmer JB, Gleave ME, Cox ME, Huntsman DG (2007) Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J Clin Pathol 60:1238–1243
Soller MJ, Isaksson M, Elfving P, Soller W, Lundgren R, Panagopoulos I (2006) Confirmation of the high frequency of the TMPRSS2:ERG fusion gene in prostate cancer. Genes Chromosomes Cancer 45:717–719
Yu J, Yu J, Mani RS (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17:443–454
Yu J, Cao Q, Yu J, Wu L, Dallol A, Li J, Chen G, Grasso C, Cao X, Lonigro RJ, Varambally S, Mehra R, Palanisamy N, Wu JY, Latif F, Chinnaiyan AM (2010) The neuronal repellant SLIT2 is a target for repression by EZH2 in prostate cancer. Oncogene 29(39):5370–5380
Yardy GW, Brewster SF (2005) Wnt signalling and prostate cancer. Prostate Cancer Prostatic Dis 8:119–126
Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, Matrisian LM (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18(18):2883–2891
He T-C, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Zinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512
Marchenko ND, Marchenko GN, Weinreb RN, Lindsey JD, Kyshtoobayeva A, Crawford HC, Strongin AY (2004) Beta-catenin regulates the gene MMP-26, a novel matrix metalloproteinase expressed both in carcinomas and normal epithelial cells. Int J Biochem Cell Biol 36(5):942–956
Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426
Robinson DR, Zylstra CR, Williams BO (2008) Wnt signaling and prostate cancer. Curr Drug Targets 9(7):571–780
Truica CI, Byers S, Gelmann EP (2000) Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 60:4709–4713
Gupta S, Iljin K, Sara H, Mpindi JP, Mirtti T, Vainio P, Rantala J, Alanen K, Nees M, Kallioniemi O (2010) FZD4 as a mediator of ERG oncogene-induced WNT singaling and epithelial- to- mesenchymal transition in human prostate cancer cells. Mol and Cell Pathobiol 70(17):6735–6745
Grunert S, Jechlinger M, Meug H (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4:657–665
Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-Beta in homeostasis and cancer. Nat Rev Cancer 3:807–820
Zhu B, Kyprianou N (2005) Transforming growth factor beta and prostate cancer. Cancer Treat Res 126:157–173
Zhu M-L, Kyprianou N (2008) Androgen receptor and growth factor signaling cross talk in prostate cancer cells. Endocr Relat Cancer 15:841–849
Zhu M-L, Partin JV, Bruckheimer EM, Strup SE, Kyprianou N (2008) TGF-Beta signaling and androgen receptor status determine apoptotic cross-talk in human prostate cancer cells. Prostate 68(3):287–295
Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-Beta family signaling. Nature 425:577–584
Coffey RJ Jr, Shipley GD, Moses HL (1986) Production of transforming growth factors by human colon cancer lines. Cancer Res 46:1164–1169
Pu H, Collazo J, Jones E, Gayheart D, Sakamoto S, Vogt A, Mitchell B, Kyprianou N (2009) Dysfunctional transforming growth factor beta receptor II accelerates prostate tumorigenesis in the TRAMP mouse model. Cancer Res 69(18):7366–7374
Ten Dijke P, Goumans MJ, Itoh F, Itoh S (2002) Regulation of cell proliferation by Smad proteins. J Cell Physiol 191:1–16
Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer- a double edged sword. Trends Cell Biol 11:S44–S51
Schmidt LJ, Duncan K, Yadav N, Regan KM, Verone AR, Lohse CM, Pop EA, Attwood K, Wilding G, Mohler JL, Sebo TJ, Tindall DJ, Heemers HV (2012) RhoA as a mediator of clinincally relevant androgen action in prostate cancer cells. Mol Endocrinol 26(5):716–735
Bierie B, Moses HL (2006) TGF-beta and cancer. Cytokine Growth Factor Rev 17(1–2):29–40
Ivanovic V, Melman A, Davis-Joseph B, Valcic M, Gelieber J (1995) Elevated plasma levels of TGF-beta in patients with invasive cancer. Nat Med 1(4):282–284
Levy L, Hill CS (2006) Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 17(1–2):41–58
Wojtowicz-Praga S (2003) Reversal of tumor-induced immunosuppression by TGF-beta inhibitors. Invest New Drugs 21(1):21–32
Song K, Wang H, Krebs TL, Wang B, Kelley TJ, Danielpour D (2010) DHT selectively reverses Smad3-mediated/TGF-Beta-induced responses through transcriptional down-regulation of Smad3 in prostate epithelial cells. Mol Endocrinol 24:2019–2029
van der Poel HG (2005) Androgen receptor and TGFbeta1/Smad signaling are mutually inhibitory in prostate cancer. Eur Urology 48(6):1051–1058
Hayes SA, Zarnegar M, Sharma M, Yang F, Peehl DM, Ven Dijke P, Sun Z (2001) SMAD3 represses androgen receptor-mediate transcription. Cancer Res 61:2112–2118
Kang HY, Huang KE, Chang SY, Ma WL, Lin WJ, Chang C (2002) Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4. J Biol Chem 277:43749–43756
Boccon-Gibod L, Hammerer P, Madersbacher S, Mottet N, Prayer-Galetti T, Tunn U (2007) The role of intermittent androgen deprivation in prostate cancer. BJU Int 100:738–743
Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A (2008) HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 283:33437–33446
Mascareno EJ, Belashov I, Siddiqui MAQ, Liu F, Dhar-Mascareno M (2012) Hexim-1 modulates androgen receptor and the TGF-Beta signaling during the progression of prostate cancer. Prostate 72:1035–1044
Lee DK, Chang C (2003) Molecular communication between androgen receptor general transcription machinery. J Steroid Biochem Mol Biol 84(1):41–49
Alarcon C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ, Sapkota G, Pan D, Massague J (2009) Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 139(4):757–769
Matsuura I, Chiang KN, Lai CY, He D, Wang G, Ramkumar R, Uchida T, Ryo A, Lu K, Liu F (2010) Pin1 promotes transforming growth factor beta induced migration and invasion. J Biol Chem 285(3):1754–1764
Bolos V, Grego-Bessa J, de la Pompa JL (2007) Notch signaling in development and cancer. Endocr Rev 28(3):339–363
Rebay I, Fleming RJ, Fehon RG, Cherbas L, Cherbas P, Artavanis-Tsakonas S (1991) Specific EGF repeats of Notch mediate interactions with delta and serrate: implications for notch as a multifunctional receptor. Cell 67:687–699
Bettenhausen B, Hrabe de Angelis M, Simon D, Guenet JL, Gosler A (1995) Transient and restricted expression during mouse embryogenesis of DII1, a murine gene closely related to Drosophila Delta. Development 121:2407–2418
Dunwoodie SL, Henrique D, Harrison SM, Beddington RS (1997) Mouse D113: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 124:3065–3076
Lindsell CE, Shawber CJ, Boulter J, Weinmaster G (1995) Jagged: a mammalian ligand that activates Notch1. Cell 80:909–917
Shawber C, Boulter J, Lindsell CE, Weinmaster G (1996) Jagged2: a serrate-like gene expressed during rat embryogenesis. Dev Biol 180:370–376
Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA, Kintner CR, Stark KL (2000) DII4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14:1313–1318
Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18:99–115
Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL, Kim R, Tang J, Montie JE, Chinnaiyan AM, Rubin MA, Aster JC (2004) JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res 64:6854–6857
Bailey JM, Singh PK, Hollingsworth MA (2007) Cancer metastasis facilitated by developmental pathways: sonic hedgehog, notch, and bone morphogenic proteins. J Cell Biochem 102:829–839
Acknowledgments
Support: NIH/NIDDK R01 Grant 00491815; James F. Hardymon Research Endowment
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Martin, S.K., Fiandalo, M.V., Kyprianou, N. (2013). Androgen Receptor Signaling Interactions Control Epithelial–Mesenchymal Transition (EMT) in Prostate Cancer Progression. In: Wang, Z. (eds) Androgen-Responsive Genes in Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6182-1_15
Download citation
DOI: https://doi.org/10.1007/978-1-4614-6182-1_15
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-6181-4
Online ISBN: 978-1-4614-6182-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)