Skip to main content

Impact of Genetic Targets on Cancer Therapy: Hepatocellular Cancer

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 779))

Abstract

Understanding cancer at the genetic level had gained significant attention over the last decade since the human genome was first sequenced in 2001. For hepatocellular carcinoma (HCC) a number of genome-wide profiling studies have been published. These studies have provided us with gene sets, based on which we can now classify tumors and have an idea about the likely clinical outcomes. In addition to that, genomic profiling for HCC has provided us a better understanding of the carcinogenesis process and identifies key steps at multiple levels (i.e. Genetics, molecular pathways) that can be potential targets for treatment and prevention. Although still an incurable disease, unresectable HCC has one proven systemic therapy, sorafenib, and many under active investigation. With advancement in technology and understanding of hepatocarcinogenesis, scientists hope to provide true personalized treatment for this disease in the near future. In this review article we discuss advances in understanding genetics and pathogenesis of HCC and the currently available and ongoing trials for targeted therapies. These emerging therapies may guide the development of more effective treatments or possibly a cure for HCC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AASLD:

American Asssociation for the Study of Liver Disease

BCLC:

Barcelona clinic liver cancer

BRAF:

V-raf murine sarcoma viral oncogene homolog B1

CRC:

Colorectal cancer

FDA:

Food and Drug Administration

EGF:

Epidermal growth factor

ERK:

Extracellular signal-regulated kinases

FGF:

Fibroblast growth factor

FRAP1:

FK506 binding protein 12-rapamycin associated protein 1

GEMOX:

Gemcitabine/ Oxaliplatin

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HCC:

Hepatocellular carcinoma

HGFR:

Hepatocyte growth factor receptor

IFN:

Interferon

IGF:

Insulin like growth factor

IL6:

Interleukin 6

JAK:

Janus kinase

KIT:

V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog

mAb:

Monoclonal antibody

MAPK:

Mitogen activated protein kinase

mTOR:

Mammalian target of rapamycin

NASH:

Nonalcoholic steatohepatitis

PI3K:

Phosphatidylinositol 3-kinase-related kinase

PDGF:

Platelet-derived growth factor

PDGFR:

Platelet-derived growth factor receptor

PR:

Partial remission

RCT:

Randomized controlled trial

RECIST:

Response evaluation criteria in solid tumors

SCFR:

Stem cell factor receptor

SD:

Stable disease

SHARP:

Sorafenib hepatocellular carcinoma assessment randomized protocol

STAT:

Signal transducer and activator of transcription

STORM:

Sorafenib as adjuvant treatment in the prevention of recurrence of hepatocellular carcinoma

TAE:

Transarterial chemoembolization

TACE:

Transarterial chemoembolization

TKI:

Tyrosine kinase inhibitor

TLR:

Toll like receptors

TNFα:

Tumor necrosis factor α

ToGA:

Trastuzumab for gastric adenocarcinoma

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.

    Article  PubMed  Google Scholar 

  2. El-Serag HB. Hepatocellular carcinoma: recent trends in the United States. Gastroenterology. 2004;127:S27–34.

    Article  PubMed  Google Scholar 

  3. Fattovich G, Stroffolini T, Zagni I, et al. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004;127:S35–50.

    Article  PubMed  Google Scholar 

  4. Sangiovanni A, Del Ninno E, Fasani P, et al. Increased survival of cirrhotic patients with a hepatocellular carcinoma detected during surveillance. Gastroenterology. 2004;126:1005–14.

    Article  PubMed  Google Scholar 

  5. Bugianesi E. Non-alcoholic steatohepatitis and cancer. Clin Liver Dis. 2007;11(1):191–207.

    Article  PubMed  CAS  Google Scholar 

  6. Liaw YF, Sung JJ, Chow WC, et al. Lamivudine for patients with chronic hepatitis B and advanced liver disease. N Engl J Med. 2004;351:1521–31.

    Article  PubMed  CAS  Google Scholar 

  7. Chang MH, Chen CJ, Lai MS, et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N Engl J Med. 1997;336:1855–9.

    Article  PubMed  CAS  Google Scholar 

  8. Sherman M, Bruix J. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.

    Article  PubMed  Google Scholar 

  9. Davila JA, Morgan RO, Richardson PA, et al. Use of surveillance for hepatocellular carcinoma among patients with cirrhosis in the United States. Hepatology. 2010;52:132–41.

    Article  PubMed  Google Scholar 

  10. El Serag HB, Siegel AB, Davila JA, Shaib YH, Cayton-Woody M, McBride R, et al. Treatment and outcomes of treating of hepatocellular carcinoma among Medicare recipients in the United States: a population- based study. J Hepatol. 2006;44:158–66.

    Article  PubMed  Google Scholar 

  11. Thomas MB, Zhu AX. Hepatocellular carcinoma: the need for progress. J Clin Oncol. 2005;23(13):2892–9.

    Article  PubMed  Google Scholar 

  12. Cabibbo G, Enea M, Attanasio M, Bruix J, Craxì A, Cammà C. A metaanalysis of survival rates of untreated patients in randomized clinical trials of hepatocellular carcinoma. Hepatology. 2010;51(4):1274–83.

    Article  PubMed  Google Scholar 

  13. Parkin DM, Bray FI, Devesa SS. Cancer burden in the year 2000. The global picture. Eur J Cancer. 2001;37(Suppl 8):S4–66.

    Article  PubMed  Google Scholar 

  14. International Working Party. Terminology of nodular hepatocellular lesions. Hepatology. 1995;22:983–93.

    Google Scholar 

  15. International Consensus Group for Hepatocellular Neoplasia. The International Consensus Group for Hepatocellular Neoplasia. Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology. 2009;49:658–64.

    Article  Google Scholar 

  16. Fernandez M, Semela D, Bruix J, et al. Angiogenesis in liver disease. J Hepatol. 2009;50:604–20.

    Article  PubMed  CAS  Google Scholar 

  17. Kaposi-Novak P, Libbrecht L, Woo HG, et al. Central role of c- Myc during malignant conversion in human hepatocarcinogenesis. Cancer Res. 2009;69:2775–82.

    Article  PubMed  CAS  Google Scholar 

  18. Zucman-Rossi J. Molecular classification of hepatocellular carcinoma. Dig Liver Dis. 2010;42(Suppl 3):S235–41.

    Article  PubMed  CAS  Google Scholar 

  19. Woo HG, Park ES, Thorgeirsson S, Kim YJ. Exploring genomic profiles of hepatocellular carcinoma. Mol Carcinog. 2011;50(4):235–43. doi:doi: 10.1002/mc.20691.

    Article  PubMed  CAS  Google Scholar 

  20. Iizuka N, Oka M, Yamada-Okabe H, et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet. 2003;361:923–9.

    Article  PubMed  CAS  Google Scholar 

  21. Lee JS, Chu IS, Heo J, et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology. 2004;40:667–76.

    Article  PubMed  CAS  Google Scholar 

  22. Wang SM, Ooi LL, Hui KM. Identification and validation of a novel gene signature associated with the recurrence of human hepatocellular carcinoma. Clin Cancer Res. 2007;13:6275–83.

    Article  PubMed  CAS  Google Scholar 

  23. Woo HG, Park ES, Cheon JH, et al. Gene expression-based recurrence prediction of hepatitis B virus-related human hepatocellular carcinoma. Clin Cancer Res. 2008;14:2056–64.

    Article  PubMed  CAS  Google Scholar 

  24. Hoshida Y, Villanueva A, Kobayashi M, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359:1995–2004.

    Article  PubMed  CAS  Google Scholar 

  25. Hernandez-Vargas H, Lambert MP, Le Calvez-Kelm F, et al. Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors. PLoS One. 2010;5:e9749.

    Article  PubMed  CAS  Google Scholar 

  26. Budhu A, Jia HL, Forgues M, et al. Identification of metastasis-related microRNAs in ­hepatocellular carcinoma. Hepatology. 2008;47:897–907.

    Article  PubMed  CAS  Google Scholar 

  27. Gehrau R, Mas V, Archer KJ, Maluf D. Molecular classification and clonal differentiation of hepatocellular carcinoma: the step forward for patient selection for liver transplantation. Exp Rev Gastroenterol Hepatol. 2011;5(4):539–52.

    Article  CAS  Google Scholar 

  28. Budhu A, Forgues M, Ye QH, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006;10:99–111.

    Article  PubMed  CAS  Google Scholar 

  29. Okamoto M, Utsunomiya T, Wakiyama S, et al. Specific geneexpression profiles of noncancerous liver tissue predict the risk for multicentric occurrence of hepatocellular carcinoma in hepatitis C virus-positive patients. Ann Surg Oncol. 2006;13:947–54.

    Article  PubMed  Google Scholar 

  30. Villanueva A, Minguez B, Forner A, et al. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy. Annu Rev Med. 2010;61:317–28.

    Article  PubMed  CAS  Google Scholar 

  31. Villanueva A, Hoshida Y, Battiston C, et al. Combining clinical, pathology, and gene expression data to predict recurrence in hepatocellular carcinoma. Gastroenterology. 2011;140(5):1501–12.

    Article  PubMed  CAS  Google Scholar 

  32. Ura S, Honda M, Yamashita T, et al. Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology. 2009;49:1098–112.

    Article  PubMed  CAS  Google Scholar 

  33. Wurmbach E, Chen YB, Khitrov G, et al. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology. 2007;45:938–47.

    Article  PubMed  CAS  Google Scholar 

  34. Nam SW, Park JY, Ramasamy A, et al. Molecular changes from dysplastic nodule to hepatocellular carcinoma through gene expression profiling. Hepatology. 2005;42:809–18.

    Article  PubMed  CAS  Google Scholar 

  35. Katoh H, Ojima H, Kokubu A, et al. Genetically distinct and clinically relevant classification of hepatocellular carcinoma: putative therapeutic targets. Gastroenterology. 2007;133:1475–86.

    Article  PubMed  CAS  Google Scholar 

  36. Van’t Veer LJ, Bernards R. Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature. 2008;452:564–70.

    Article  PubMed  CAS  Google Scholar 

  37. Hoshida Y, Toffanin S, Lachenmayer A, et al. Molecular classification and novel targets in hepatocellular carcinoma: recent advancements. Semin Liver Dis. 2010;30:35–51.

    Article  PubMed  CAS  Google Scholar 

  38. Tovar V, Alsinet C, Villanueva A, et al. IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J Hepatol. 2010;52:550–9.

    Article  PubMed  CAS  Google Scholar 

  39. Villanueva A, Chiang DY, Newell P. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 2008;135:1972–83. 1983 e1-11.

    Article  PubMed  CAS  Google Scholar 

  40. Villanueva A, Llovet JM. Targeted therapies for hepatocellular carcinoma. Gastroenterology. 2011;140(5):1410–26. Epub 2011 Mar 13.

    Article  PubMed  CAS  Google Scholar 

  41. Lee JS, Chu IS, Mikaelyan A, et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet. 2004;36:1306–11.

    Article  PubMed  CAS  Google Scholar 

  42. Minguez B, Tovar V, Chiang D, Villanueva A, Llovet JM. Pathogenesis of hepatocellular carcinoma and molecular therapies. Curr Opin Gastroenterol. 2009;25:186–94.

    Article  PubMed  CAS  Google Scholar 

  43. Hayashi PH, Di Bisceglie AM. The progression of hepatitis B- and C-infections to chronic liver disease and hepatocellular carcinoma: epidemiology and pathogenesis. Med Clin North Am. 2005;89(2):371–8.

    Article  PubMed  CAS  Google Scholar 

  44. Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev. 2000;64(1):51–68.

    Article  PubMed  CAS  Google Scholar 

  45. Yuen MF, Wu PC, Lai VC, Lau JY, Lai CL. Expression of c-Myc, c-Fos, and c-jun in hepatocellular carcinoma. Cancer. 2001;911:106–12.

    Article  Google Scholar 

  46. Chirillo P, Pagano S, Natoli G, Puri PL, Burgio VL, Balsano C, Levrero M. The hepatitis B virus X gene induces p53-mediated programmed cell death. Proc Natl Acad Sci USA. 1997;94:8162–7.

    Article  PubMed  CAS  Google Scholar 

  47. Tellinghuisen R. Interaction between hepatitis C virus proteins and host cell factors. Curr Opin Microbiol. 2002;5(4):419–27.

    Article  PubMed  CAS  Google Scholar 

  48. Kiyosawa K, Sodeyama T, Tanaka E, Gibo Y, Yoshizawa K, Nakano Y, Purcell RH, Alter HJ. Interrelationship of blood transfusion, non-A, non-B hepatitis and hepatocellular carcinoma: analysis by detection of antibody to hepatitis C virus. Hepatology. 1990;12:671–5.

    Article  PubMed  CAS  Google Scholar 

  49. Giambartolomei S, Covone F, Levrero M, Balsano C. Sustained activation of the Raf/MEK/Erk pathway in response to EGF in s cell lines expressing the Hepatitis C Virus HCV core protein. Oncogene. 2001;20:2606–10.

    Article  PubMed  CAS  Google Scholar 

  50. Marra M, Sordelli IM, Lombardi A, Lamberti M. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med. 2011;9:171.

    Article  PubMed  CAS  Google Scholar 

  51. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17.

    Article  PubMed  CAS  Google Scholar 

  52. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347:472–80.

    Article  PubMed  CAS  Google Scholar 

  53. Rutkowski P, Van Glabbeke M, Rankin CJ, et al. European Organisation for Research and Treatment of Cancer Soft Tissue/Bone Sarcoma Group, Southwest Oncology Group. Imatinib mesylate in advanced dermatofibrosarcoma protuberans: pooled analysis of two phase II clinical trials. J Clin Oncol. 2010;28(10):1772.

    Article  PubMed  CAS  Google Scholar 

  54. Llovet JM, Ricci S, Mazzaferro V, et al. SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.

    Article  PubMed  CAS  Google Scholar 

  55. Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34.

    Article  PubMed  CAS  Google Scholar 

  56. www.clinicaltrials.gov

  57. Llovet JM, Di Bisceglie AM, Bruix J, et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst. 2008;100:698–711.

    Article  PubMed  Google Scholar 

  58. Piscaglia F, Bolondi L. The intermediate hepatocellular carcinoma stage: should treatment be expanded? Dig Liver Dis. 2010;42(Suppl 3):S258–63.

    Article  PubMed  Google Scholar 

  59. Peck-Radosavljevic M, Greten TF, Lammer J, et al. Consensus on the current use of sorafenib for the treatment of hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 2010;22(4):391–8.

    Article  PubMed  CAS  Google Scholar 

  60. Abou-Alfa GK, Schwartz L, Ricci S, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2006;24:4293–300.

    Article  PubMed  CAS  Google Scholar 

  61. Philip PA, Mahoney MR, Allmer C, et al. Phase II study of Erlotinib (OSI-774) in patients with advanced Hepatocellular cancer. J Clin Oncol. 2005;23:6657–63.

    Article  PubMed  CAS  Google Scholar 

  62. Thomas MB, Chadha R, Glover K, et al. Phase 2 study of erlotinib in patients with unresectable hepatocellular carcinoma. Cancer. 2007;110:1059–67.

    Article  PubMed  CAS  Google Scholar 

  63. Faivre S, Raymond E, Boucher E, et al. Safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma: an open-label, multicentre, phase II study. Lancet Oncol. 2009;10(8):794–800.

    Article  PubMed  CAS  Google Scholar 

  64. Zhu AX, Sahani DV, Duda DG, et al. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J Clin Oncol. 2009;27(18):3027–35.

    Article  PubMed  CAS  Google Scholar 

  65. Toh H, Chen P, Carr BI, et al. A phase II study of ABT-869 in Hepatocellular carcinoma (HCC): interim analysis. J Clin Oncol. 2009;27:222s. abstr 4581.

    Article  Google Scholar 

  66. Gupta N, Chiu Y, Toh HC, et al. Preliminary pharmacokinetics and safety comparison of Child Pugh A vs. Child Pugh B patients enrolled in a phase 2 study of Linifanib (ABT-869) in hepatocellular carcinoma [abstract]. 2010 ESMO Congress, Milan, Italy, Abstract number 3105.

    Google Scholar 

  67. Park JW, Finn RS, Kim JS, et al. Phase II, open-label study of brivanib as first-line therapy in patients with advanced Hepatocellular carcinoma. Clin Cancer Res. 2011;17:1973–83.

    Article  PubMed  CAS  Google Scholar 

  68. Ramanathan RK, Belani CP, Singh DA, et al. A phase II study of lapatinib in patients with advanced biliary tree and hepatocellular cancer. Cancer Chemother Pharmacol. 2009;64:777–83.

    Article  PubMed  CAS  Google Scholar 

  69. Trujillo JI. MEK inhibitors: a patent review 2008–2010. Expert Opin Ther Pat. 2011;21(7):1045–69. Epub 2011 May 9.

    Article  PubMed  CAS  Google Scholar 

  70. O’Neil BH, Goff LW, Kauh JS, Strosberg JR, et al. Phase II study of the mitogen-activated protein kinase 1/2 inhibitor selumetinib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2011;29(17):2350–6. Epub 2011 Apr 25.

    Article  PubMed  CAS  Google Scholar 

  71. You H, Ding W, Dang H, Jiang Y, Rountree CB. c- Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology. 2011;54(3):879–89. doi:doi: 10.1002/hep.24450 [Epub ahead of print].

    Article  PubMed  CAS  Google Scholar 

  72. A Santoro, M. Simonelli, P. Zucali, L. Rimassa, N. N. Senzer, L. H. Camacho, L. Bolondi, M. Lamar, G. Abbadessa, J. A phase Ib safety trial of ARQ 197 in cirrhotic patients with hepatocellular carcinoma (HCC). 2010 Gastrointestinal Cancers Symposium, Orlando, FL, Abstract 187.

    Google Scholar 

  73. T. Yau, C.-J. Yen, P.-J. Chen, Y. Chau, R. Lencioni, H. Kallender, L.H. Ottesen, R.T. A phase I/II study of Foretinib, a oral Multikinase Inhibitor targeting MET in advanced HCC The International Liver Congress, 2011 ( European Association for the study of the Liver Disease 2011) Berlin, Germany, 30 Mar – 3 Apr 2011.

    Google Scholar 

  74. Treiber G. mTOR inhibitors for hepatocellular cancer: a forward-moving target. Expert Rev Anticancer Ther. 2009;9(2):247–61.

    Article  PubMed  CAS  Google Scholar 

  75. Villanueva A, Chiang DY, Newell P, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 2008;135(6):1972–83. 1983.e1-11.

    Article  PubMed  CAS  Google Scholar 

  76. Heuer M, Benko T, Cicinnati VR, Kaiser GM, Sotiropoulos GC, Baba HA, et al. Effect of low-dose rapamycin on tumor growth in two human hepatocellular cancer cell lines. Transplant Proc. 2009;41:359–65.

    Article  PubMed  CAS  Google Scholar 

  77. Toso C, Meeberg GA, Bigam DL, Oberholzer J, Shapiro AM, Gutfreund K, et al. De novo sirolimus-based immunosuppression after liver transplantation for hepatocellular carcinoma: long-term outcomes and side effects. Transplantation. 2007;83:1162–8.

    Article  PubMed  CAS  Google Scholar 

  78. Zhou J, Wang Z, Wu ZQ, Qiu SJ, Yu Y, Huang XW, et al. Sirolimusbased immunosuppression therapy in liver transplantation for patients with hepatocellular carcinoma exceeding the Milan criteria. Transplant Proc. 2008;40:3548–53.

    Article  PubMed  CAS  Google Scholar 

  79. Rizell M, Andersson M, Cahlin C, Hafstrom L, Olausson M, Lindner P. Effects of the mTOR inhibitor sirolimus in patients with hepatocellular and cholangiocellular cancer. Int J Clin Oncol. 2008;13:66–70.

    Article  PubMed  CAS  Google Scholar 

  80. Huynh H, Chow KP, Soo KC, Toh HC, Choo SP, Foo KF, et al. RAD001 (everolimus) inhibits tumor growth in xenograft models of human hepatocellular carcinoma. J Cell Mol Med. 2009;13:1371–80.

    Article  PubMed  CAS  Google Scholar 

  81. Huynh H, Ngo VC, Koong HN, Poon D, Choo SP, Thng CH, et al. Sorafenib and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Cell Mol Med. 2009;13:2673–83.

    Article  PubMed  Google Scholar 

  82. Zhu AX, Abrams TA, Miksad R, Blaszkowsky LS, et al. Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. Cancer. 2011 Apr 27. doi: 10.1002/cncr.26165. [Epub ahead of print].

  83. Reichert JM, Rosensweig CJ, Faden LB, et al. Monoclonal antibody successes in the clinic. Nat Biotechnol. 2005;23:1073–8.

    Article  PubMed  CAS  Google Scholar 

  84. Dancey J, Sausville EA. Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov. 2003;2:296–313.

    Article  PubMed  CAS  Google Scholar 

  85. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10:145–7.

    Article  PubMed  CAS  Google Scholar 

  86. Siegel AB, Cohen EI, Ocean A, et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol. 2008;26(18):2992–8.

    Article  PubMed  CAS  Google Scholar 

  87. Zhu AX, Blaszkowsky LS, Ryan DP, Clark JW, Muzikansky A, Horgan K, et al. Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2006;24:1898–903.

    Article  PubMed  CAS  Google Scholar 

  88. Sun W, Sohal D, Haller DG, Mykulowycz K, Rosen M, et al. Phase 2 trial of bevacizumab, capecitabine, and oxaliplatin in treatment of advanced hepatocellular carcinoma. Cancer. 2011;117(14):3187–92. doi:doi: 10.1002/cncr.25889. Epub 2011 Jan 24.

    Article  PubMed  CAS  Google Scholar 

  89. Buckley AF, Burgart LJ, Sahai V, Kakar S. Epidermal growth factor receptor expression and gene copy number in conventional hepatocellular carcinoma. Am J Clin Pathol. 2008;129:245–51.

    Article  PubMed  Google Scholar 

  90. Schiffer E, Housset C, Cacheux W, Wendum D, Desbois-Mouthon C, Rey C, et al. Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis. Hepatology. 2005;41:307–14.

    Article  PubMed  CAS  Google Scholar 

  91. Zhu AX, Stuart K, Blaszkowsky LS, et al. Phase 2 study of Cetuximab in patients with advanced hepatocellular carcinoma. Cancer. 2007;110(3):581–9.

    Article  PubMed  CAS  Google Scholar 

  92. Asnacios A, Fartoux L, Romano O, et al. Gemcitabine plus oxaliplatin (GEMOX) combined with cetuximab in patients with progressive advanced stage hepatocellular carcinoma: results of a multicenter phase 2 study. Cancer. 2008;112(12):2733–9.

    Article  PubMed  CAS  Google Scholar 

  93. Hopfner M, Huether A, Sutter AP, Baradari V, Schuppan D, Scherubl H. Blockade of IGF-1 receptor tyrosine kinase has antineoplastic effects in hepatocellular carcinoma cells. Biochem Pharmacol. 2006;71:1435–48.

    Article  PubMed  CAS  Google Scholar 

  94. Turnbull J, Powell A, Guimond S. Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol. 2001;11:75–82.

    Article  PubMed  CAS  Google Scholar 

  95. Miao HQ, Liu H, Navarro E, Kussie P, Zhu Z. Development of heparanase inhibitors for anti-cancer therapy. Curr Med Chem. 2006;13:2101–11.

    Article  PubMed  CAS  Google Scholar 

  96. McKenzie EA. Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol. 2007;151:1–14.

    Article  PubMed  CAS  Google Scholar 

  97. Liu CJ, Lee PH, Lin DY, et al. Heparanase inhibitor PI-88 as adjuvant therapy for hepatocellular carcinoma after curative resection: a randomized phase II trial for safety and optimal dosage. J Hepatol. 2009;50(5):958–68. Epub 2009 Feb 15.

    Article  PubMed  CAS  Google Scholar 

  98. Spratlin JL, Pitts TM, Kulikowski GN, et al. Synergistic activity of histone deacetylase and proteasome inhibition against pancreatic and hepatocellular cancer cell lines. Anticancer Res. 2011;31(4):1093–103.

    PubMed  CAS  Google Scholar 

  99. Lemoine M, Younes A. Histone deacetylase inhibitors in the treatment of lymphoma. Discov Med. 2010;10(54):462–70.

    PubMed  Google Scholar 

  100. Chambon P. The retinoid signaling pathway: molecular and genetic analyses. Semin Cell Biol. 1994;5:115–25.

    Article  PubMed  CAS  Google Scholar 

  101. Murakami K, Wierzba K, Sano M, et al. TAC-101, a benzoic acid derivative, inhibits liver metastasis of human gastrointestinal cancer and prolongs the life-span. Clin Exp Metastasis. 1998;16:323–31.

    Article  PubMed  CAS  Google Scholar 

  102. Shibata J, Murakami K, Wierzba K, et al. Anticancer effect of 4-[3,5-bis (trimethylsilyl) benzamido] benzoic acid (TAC-101) against A549 non–small cell lung cancer cell line is related to its anti-invasive activity. Anticancer Res. 2000;20:3169–76.

    PubMed  CAS  Google Scholar 

  103. Duckett CS, Li F, Wang Y, Tomaselli KJ, Thompson CB, Armstrong RC. Human IAP-like protein regulates programmed cell death downstream of Bcl-xL and cytochrome c. Mol Cell Biol. 1998;18(1):608–15.

    PubMed  CAS  Google Scholar 

  104. Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev. 1999;13(3):239–52.

    Article  PubMed  CAS  Google Scholar 

  105. Herbst RS, Hong D, Chap L, Kurzrock R, Jackson E, et al. Safety, pharmacokinetics, andantitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J Clin Oncol. 2009;27(21):3557–65.

    Article  PubMed  CAS  Google Scholar 

  106. Abou-Alfa GK, Johnson P, Knox JJ, et al. Doxorubicin plus sorafenib vs doxorubicin alone in patients with advanced hepatocellular carcinoma: a randomized trial. JAMA. 2010;304(19):2154–60.

    Article  PubMed  CAS  Google Scholar 

  107. Azad NS, Aragon-Ching JB, Dahut WL, et al. Hand-foot skin reaction increases with cumulative sorafenib dose and with combination anti-vascular endothelial growth factor therapy. Clin Cancer Res. 2009;15(4):1411–6.

    Article  PubMed  CAS  Google Scholar 

  108. Azad NS, Posadas EM, Kwitkowski VE, Steinberg SM, Jain L, Annunziata CM, et al. Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J Clin Oncol. 2008;26:3709–14.

    Article  PubMed  CAS  Google Scholar 

  109. Camp ER, Summy J, Bauer TW, Liu W, Gallick GE, Ellis LM. Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin Cancer Res. 2005;11:397–405.

    PubMed  CAS  Google Scholar 

  110. Thomas MB, Morris JS, Chadha R, et al. Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol. 2009;27(6):843–50. Epub 2009 Jan 12.

    Article  PubMed  CAS  Google Scholar 

  111. Russo FP, Parola M. Stem and progenitor cells in liver regeneration and repair. Cytotherapy. 2011;13:135–44.

    Article  PubMed  Google Scholar 

  112. Oishi N, Wang XW. Novel therapeutic strategies for targeting liver cancer stem cells. Int J Biol Sci. 2011;7(5):517–35.

    Article  PubMed  CAS  Google Scholar 

  113. Song W, Li H, Tao K, et al. Expression and clinical significance of the stem cell marker CD133 in hepatocellular carcinoma. Int J Clin Pract. 2008;62:1212–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama Hamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hamed, O., Kimchi, E.T., Sehmbey, M., Gusani, N.J., Kaifi, J.T., Staveley-O’Carroll, K. (2013). Impact of Genetic Targets on Cancer Therapy: Hepatocellular Cancer. In: El-Deiry, W. (eds) Impact of Genetic Targets on Cancer Therapy. Advances in Experimental Medicine and Biology, vol 779. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6176-0_4

Download citation

Publish with us

Policies and ethics