Genetic Targets in Pediatric Acute Lymphoblastic Leukemia

  • Chandrika Gowda
  • Sinisa Dovat
Part of the Advances in Experimental Medicine and Biology book series (volume 779)


Acute leukemia represents 31% of all cancers diagnosed in children and 80% of it is of Lymphoblastic type. Multiple genetic lesions in the hematopoietic progenitor cells prior to or during differentiation to B and T cell lead to development of leukemia. There are several subtypes of Acute Leukemia based on chromosome number changes, the presence of certain translocations and gene mutations, each of which has different clinical, biological and prognostic features. High throughput genomic technologies like array-based comparative genomic hybridization (array-CGH) and single nucleotide polymorphism microarrays (SNP arrays), have given us insight through a very detailed look at the genetic changes of leukemia, specifically, ALL. Here, we discuss various genetic mutations identified in Acute Lymphoblastic Leukemia. We also explore various genetic targets and currently available as well as upcoming targeted therapies for ALL.


Pediatric ALL B-cell Immunophenotype Fanconi anemia Down’s syndrome Bloom’s syndrome Ataxia telangiectasia Neurofibromatosis Leukemia ALL Array CGH SNP RUNX1 MLL BCR-ABL IKZF1 CRLF2 E2A-PBX1 E2A-HLF FLT3 Ras Gamma sectretase TKI ETV6-RUNX1 Dasatinib Ikaros TdT JAK mutation STAT PAX5 NOTCH FBXW7 PTEN PI3K Akt LMO1 TAL1 HOX11 MYB 



This work was supported in part by an R01 HL095120 grant, The Four Diamonds Fund of the Pennsylvania State University College of Medicine, John Wawrynovic Leukemia Research Scholar Endowment (SD), St.Baldrick’s foundation grant.


  1. 1.
    Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371(9617):1030–43. Epub 2008/03/25.PubMedCrossRefGoogle Scholar
  2. 2.
    O’Leary M, Krailo M, Anderson JR, Reaman GH, Children’s Oncology G. Progress in childhood cancer: 50 years of research collaboration, a report from the Children’s oncology group. Semin Oncol. 2008;35(5):484–93. Epub 2008/10/22.PubMedCrossRefGoogle Scholar
  3. 3.
    Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G, et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet. 1999;354(9189):1499–503. Epub 1999/11/07.PubMedCrossRefGoogle Scholar
  4. 4.
    Armstrong SA, Look AT. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol. 2005;23(26):6306–15. Epub 2005/09/13.PubMedCrossRefGoogle Scholar
  5. 5.
    Schultz KR, Pullen DJ, Sather HN, Shuster JJ, Devidas M, Borowitz MJ, et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the pediatric oncology group (POG) and Children’s cancer group (CCG). Blood. 2007;109(3):926–35. Epub 2006/09/28.PubMedCrossRefGoogle Scholar
  6. 6.
    Borowitz MJ, Devidas M, Hunger SP, Bowman WP, Carroll AJ, Carroll WL, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s oncology group study. Blood. 2008;111(12):5477–85. Epub 2008/04/05.PubMedCrossRefGoogle Scholar
  7. 7.
    Weinstein IB, Joe AK. Mechanisms of disease: oncogene addictiona rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006;3(8):448–57. Epub 2006/08/09.PubMedCrossRefGoogle Scholar
  8. 8.
    Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29(5):551–65. Epub 2011/01/12.PubMedCrossRefGoogle Scholar
  9. 9.
    Wiemels J. Perspectives on the causes of childhood leukemia. Chem Biol Interact. 2012;196(3):59–67. Epub 2012/02/14.PubMedCrossRefGoogle Scholar
  10. 10.
    Mullighan CG. Genomic analysis of acute leukemia. Int J Lab Hematol. 2009;31(4):384–97. Epub 2009/06/03.PubMedCrossRefGoogle Scholar
  11. 11.
    Mullighan CG, Downing JR. Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia. 2009;23(7):1209–18. Epub 2009/02/27.PubMedCrossRefGoogle Scholar
  12. 12.
    Zelent A, Greaves M, Enver T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene. 2004;23(24):4275–83. Epub 2004/05/25.PubMedCrossRefGoogle Scholar
  13. 13.
    Ford AM, Bennett CA, Price CM, Bruin MC, Van Wering ER, Greaves M. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA. 1998;95(8):4584–8. Epub 1998/05/16.PubMedCrossRefGoogle Scholar
  14. 14.
    Pine SR, Wiemels JL, Jayabose S, Sandoval C. TEL-AML1 fusion precedes differentiation to pre-B cells in childhood acute lymphoblastic leukemia. Leuk Res. 2003;27(2):155–64. Epub 2003/01/16.PubMedCrossRefGoogle Scholar
  15. 15.
    Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer. 2003;3(9):639–49. Epub 2003/09/03.PubMedCrossRefGoogle Scholar
  16. 16.
    Arico M, Schrappe M, Hunger SP, Carroll WL, Conter V, Galimberti S, et al. Clinical outcome of children with newly diagnosed philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol. 2010;28(31):4755–61. Epub 2010/09/30.PubMedCrossRefGoogle Scholar
  17. 17.
    Teitell MA, Pandolfi PP. Molecular genetics of acute lymphoblastic leukemia. Annu Rev Pathol-Mech. 2009;4:175–98. Epub 2008/09/12.CrossRefGoogle Scholar
  18. 18.
    Clark SS, McLaughlin J, Crist WM, Champlin R, Witte ON. Unique forms of the abl tyrosine kinase distinguish Ph1-positive CML from Ph1-positive ALL. Science. 1987;235(4784):85–8. Epub 1987/01/02.PubMedCrossRefGoogle Scholar
  19. 19.
    Ribeiro RC, Abromowitch M, Raimondi SC, Murphy SB, Behm F, Williams DL. Clinical and biologic hallmarks of the philadelphia chromosome in childhood acute lymphoblastic leukemia. Blood. 1987;70(4):948–53. Epub 1987/10/01.PubMedGoogle Scholar
  20. 20.
    Kharas MG, Fruman DA. ABL oncogenes and phosphoinositide 3-kinase: mechanism of activation and downstream effectors. Cancer Res. 2005;65(6):2047–53. Epub 2005/03/23.PubMedCrossRefGoogle Scholar
  21. 21.
    Salomoni P, Condorelli F, Sweeney SM, Calabretta B. Versatility of BCR/ABL-expressing leukemic cells in circumventing proapoptotic BAD effects. Blood. 2000;96(2):676–84. Epub 2000/07/11.PubMedGoogle Scholar
  22. 22.
    O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004. Epub 2003/03/15.PubMedCrossRefGoogle Scholar
  23. 23.
    Arico M, Valsecchi MG, Camitta B, Schrappe M, Chessells J, Baruchel A, et al. Outcome of treatment in children with philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med. 2000;342(14):998–1006. Epub 2000/04/06.PubMedCrossRefGoogle Scholar
  24. 24.
    Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30(1):41–7. Epub 2001/12/04.PubMedCrossRefGoogle Scholar
  25. 25.
    Armstrong SA, Mabon ME, Silverman LB, Li A, Gribben JG, Fox EA, et al. FLT3 mutations in childhood acute lymphoblastic leukemia. Blood. 2004;103(9):3544–6. Epub 2003/12/13.PubMedCrossRefGoogle Scholar
  26. 26.
    Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG. Association of transcriptionally silent genes with ikaros complexes at centromeric heterochromatin. Cell. 1997;91(6):845–54. Epub 1997/12/31.PubMedCrossRefGoogle Scholar
  27. 27.
    Dovat S, Payne KJ. Tumor suppression in T cell leukemia—the role of ikaros. Leuk Res. 2010;34(4):416–7. Epub 2009/11/07.PubMedCrossRefGoogle Scholar
  28. 28.
    Payne KJ, Dovat S. Ikaros and tumor suppression in acute lymphoblastic leukemia. Crit Rev Oncog. 2011;16(1–2):3–12. Epub 2011/12/14.PubMedCrossRefGoogle Scholar
  29. 29.
    Dovat S, Song C, Payne KJ, Li Z. Ikaros, CK2 kinase, and the road to leukemia. Mol Cell Biochem. 2011;356(1–2):201–7. Epub 2011/07/14.PubMedCrossRefGoogle Scholar
  30. 30.
    Song C, Li Z, Erbe AK, Savic A, Dovat S. Regulation of Ikaros function by casein kinase 2 and protein phosphatase 1. World J Biol Chem. 2011;2(6):126–31. Epub 2011/07/19.PubMedCrossRefGoogle Scholar
  31. 31.
    Li Z, Song C, Ouyang H, Lai L, Payne KJ, Dovat S. Cell cycle-specific function of ikaros in human leukemia. Pediatr Blood Cancer. 2012;59(1):69–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Gurel Z, Ronni T, Ho S, Kuchar J, Payne KJ, Turk CW, et al. Recruitment of ikaros to pericentromeric heterochromatin is regulated by phosphorylation. J Biol Chem. 2008;283(13):8291–300. Epub 2008/01/29.PubMedCrossRefGoogle Scholar
  33. 33.
    Popescu M, Gurel Z, Ronni T, Song C, Hung KY, Payne KJ, et al. Ikaros stability and pericentromeric localization are regulated by protein phosphatase 1. J Biol Chem. 2009;284(20):13869–80. Epub 2009/03/14.PubMedCrossRefGoogle Scholar
  34. 34.
    Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of ikaros. Nature. 2008;453(7191):110–4. Epub 2008/04/15.PubMedCrossRefGoogle Scholar
  35. 35.
    Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80. Epub 2009/01/09.PubMedCrossRefGoogle Scholar
  36. 36.
    Tonnelle C, Dijon M, Moreau T, Garulli C, Bardin F, Chabannon C. Stage specific over-expression of the dominant negative ikaros 6 reveals distinct role of ikaros throughout human B-cell differentiation. Mol Immunol. 2009;46(8–9):1736–43. Epub 2009/03/17.PubMedCrossRefGoogle Scholar
  37. 37.
    Waanders E, van der Velden VH, van der Schoot CE, van Leeuwen FN, van Reijmersdal SV, de Haas V, et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79 % of relapses in pediatric acute lymphoblastic leukemia. Leukemia. 2011;25(2):254–8. Official Journal of the Leukemia Society of America, Leukemia Research Fund, UK. Epub 2010/11/26.PubMedCrossRefGoogle Scholar
  38. 38.
    Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34. Epub 2009/01/14.CrossRefGoogle Scholar
  39. 39.
    Hunger SP, Raetz EA, Loh ML, Mullighan CG. Improving outcomes for high-risk ALL: tr­anslating new discoveries into clinical care. Pediatr Blood Cancer. 2011;56(6):984–93. Epub 2011/03/04.PubMedCrossRefGoogle Scholar
  40. 40.
    Mullighan CG, Collins-Underwood JR, Phillips LA, Loudin MG, Liu W, Zhang J, et al. Rearrangement of CRLF2 in B-progenitor- and down syndrome-associated acute lymphoblastic leukemia. Nat Genet. 2009;41(11):1243–6. Epub 2009/10/20.PubMedCrossRefGoogle Scholar
  41. 41.
    Mullighan CG, Zhang J, Harvey RC, Collins-Underwood JR, Schulman BA, Phillips LA, et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2009;106(23):9414–8. Epub 2009/05/28.PubMedCrossRefGoogle Scholar
  42. 42.
    Russell LJ, Capasso M, Vater I, Akasaka T, Bernard OA, Calasanz MJ, et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood. 2009;114(13):2688–98. Epub 2009/07/31.PubMedCrossRefGoogle Scholar
  43. 43.
    Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–64. Epub 2007/03/09.PubMedCrossRefGoogle Scholar
  44. 44.
    Bousquet M, Broccardo C, Quelen C, Meggetto F, Kuhlein E, Delsol G, et al. A novel PAX5-ELN fusion protein identified in B-cell acute lymphoblastic leukemia acts as a dominant negative on wild-type PAX5. Blood. 2007;109(8):3417–23. Epub 2006/12/21.PubMedCrossRefGoogle Scholar
  45. 45.
    Cortes M, Wong E, Koipally J, Georgopoulos K. Control of lymphocyte development by the ikaros gene family. Curr Opin Immunol. 1999;11(2):167–71. Epub 1999/05/14.PubMedCrossRefGoogle Scholar
  46. 46.
    Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol. 2002;2(3):162–74. Epub 2002/03/27.PubMedCrossRefGoogle Scholar
  47. 47.
    Aspland SE, Bendall HH, Murre C. The role of E2A-PBX1 in leukemogenesis. Oncogene. 2001;20(40):5708–17. Epub 2001/10/19.PubMedCrossRefGoogle Scholar
  48. 48.
    Hunger SP, Li S, Fall MZ, Naumovski L, Cleary ML. The proto-oncogene HLF and the related basic leucine zipper protein TEF display highly similar DNA-binding and transcriptional regulatory properties. Blood. 1996;87(11):4607–17. Epub 1996/06/01.PubMedGoogle Scholar
  49. 49.
    Dear TN, Colledge WH, Carlton MB, Lavenir I, Larson T, Smith AJ, et al. The Hox11 gene is essential for cell survival during spleen development. Development. 1995;121(9):2909–15. Epub 1995/09/01.PubMedGoogle Scholar
  50. 50.
    Roberts CW, Shutter JR, Korsmeyer SJ. Hox11 controls the genesis of the spleen. Nature. 1994;368(6473):747–9. Epub 1994/04/21.PubMedCrossRefGoogle Scholar
  51. 51.
    Hatano M, Roberts CW, Minden M, Crist WM, Korsmeyer SJ. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science. 1991;253(5015):79–82. Epub 1991/07/05.PubMedCrossRefGoogle Scholar
  52. 52.
    Su XY, Della-Valle V, Andre-Schmutz I, Lemercier C, Radford-Weiss I, Ballerini P, et al. HOX11L2/TLX3 Is transcriptionally activated through T-cell regulatory elements downstream of BCL11B as a result of the t(5;14)(q35;q32). Blood. 2006;108(13):4198–201. Epub 2006/08/24.PubMedCrossRefGoogle Scholar
  53. 53.
    Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71. Epub 2004/10/09.PubMedCrossRefGoogle Scholar
  54. 54.
    Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA. 2006;103(48):18261–6. Epub 2006/11/23.PubMedCrossRefGoogle Scholar
  55. 55.
    Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gadient R, et al. Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci. 2004;82(1):341–58 An official Journal of the Society of Toxicology. Epub 2004/08/21.PubMedCrossRefGoogle Scholar
  56. 56.
    Real PJ, Tosello V, Palomero T, Castillo M, Hernando E, de Stanchina E, et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15(1):50–8. Epub 2008/12/23.PubMedCrossRefGoogle Scholar
  57. 57.
    Ciofani M, Zuniga-Pflucker JC. Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol. 2005;6(9):881–8. Epub 2005/08/02.PubMedCrossRefGoogle Scholar
  58. 58.
    O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007;204(8):1813–24. Epub 2007/07/25.PubMedCrossRefGoogle Scholar
  59. 59.
    Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 2007;204(8):1825–35. Epub 2007/07/25.PubMedCrossRefGoogle Scholar
  60. 60.
    Rubnitz JE, Pui CH. Recent advances in the treatment and understanding of childhood acute lymphoblastic leukaemia. Cancer Treat Rev. 2003;29(1):31–44. Epub 2003/03/14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of Pediatric Hematology - Oncology, Penn State Hershey Children’s Hospital, Milton S Hershey Medical centerPennsylvania State UniversityHersheyUSA
  2. 2.Penn State Hershey Medical CenterHersheyUSA

Personalised recommendations