Skip to main content

Impact of Genetic Targets on Primary Brain Tumor Therapy: What’s Ready for Prime Time?

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 779))

Abstract

Primary brain tumors constitute a substantial public health problem with 66,290 cases diagnosed in the US in 2012, and 13,700 deaths recorded. With discovery of genetic factors associated with specific brain tumor subtypes, the goal of therapy is changing from treating a class of tumors to developing individualized therapies catering to the molecular composition of the actual tumor. For oligodendrogliomas, the loss of 1p/19q due to an unbalanced translocation improves both survival and the response to therapy, and is thus both a prognostic and a predictive marker. Several additional genetic alterations such as EGFR amplification, MGMT methylation, PDGFR activation, and 9p and 10q loss, have improved our understanding of the characteristics of these tumors and may help guide therapy in the future. For astrocytic tumors, MGMT is associated with a better prognosis and an improved response to temozolomide, and for all glial tumors, mutations in the IDH1 gene are possibly the most potent of good prognostic markers. Three of these markers – 1p/19q deletions, MGMT methylation status, and mutations in the IDH1 gene – are so potent that a new brain tumor subtype, the “triple negative” glioma (1p/19q intact, MGMT unmethylated, IDH1 non-mutated) has entered common parlance. Newer markers, such as CD 133, require additional investigation to determine their prognostic and predictive utility. In medulloblastomas, markers of WNT activation, MYCC/MCYN amplification, and TrkC expression levels are reliable prognostic indicators, but do not yet drive specific treatment selection. Many other proposed markers, such as 17q gain, TP53 mutations, and hMOF protein expression show promise, but are not yet ready for prime time. In this chapter, we focus on the markers that have shown convincing prognostic, predictive, and diagnostic value, and discuss potential markers that are being currently being intensively investigated. We also discuss serum profiling of tumors in an effort to discover additional potential markers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. CBTRUS. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004–2007. Source: Central Brain Tumor Registry of the United States, Hinsdale, IL, 2011. Website: www.cbtrus.org

  2. Siegel R, Ward E, Brawley O, Jemal A. The impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61:212–36.

    PubMed  Google Scholar 

  3. Paleologos NA, MacDonald DR, Vick NA. Neoadjuvant procarbazine, CCNU, and vincristine for anaplastic and aggressive oligodendroglioma. Neurology. 1999;53:1141–3.

    PubMed  CAS  Google Scholar 

  4. Mork SJ, Halvorsen TB, Lindegaard KF, Eide GE. Oligodendrofglioma, histologic evaluation and prognosis. J Neuropathol Exp Neurol. 1986;45:65–78.

    PubMed  CAS  Google Scholar 

  5. Shaw EG, Scheithauer BW, O’Fallon JR, Tazelaar HD, Davis DH. Oligodendrogliomas: the Mayo clinic experience. J Neurosurg. 1992;76:428–34.

    PubMed  CAS  Google Scholar 

  6. Winger MJ, Macdonald DR, Cairncross JG. Supratentorial anaplastic gliomas in adults, the prognostic importance of extent of resection and prior low-grade glioma. J Neurosurg. 1989;71:487–93.

    PubMed  CAS  Google Scholar 

  7. Cairncross JG, MacDonald DR. Successful chemotherapy for recurrent malignant oligodendroglioma. Ann Neurol. 1988;23:360–4.

    PubMed  CAS  Google Scholar 

  8. Cairncross G, Berkey B, Shaw E, Jenkins R, Scheithauer B, Brachman D, Buckner J, Fink K, Souhami L, Laperierre N, Mehta M, Curran W. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol. 2006;24:2707–14.

    PubMed  CAS  Google Scholar 

  9. Van den Bent MJ, Carpentier AF, Brandes AA, Sanson M, Taphoorn MJ, Bernsen HJ, Frenay M, Tijssen CC, Grisold W, Sipos L, Haaxma-Reiche H, Kros JM, van Kouwenhoven MC, Vecht CJ, Allgeier A, Lacombe D, Gorlia T. Adjuvant procarbazine, lomustine, and vincristine improves progression- free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European organisation for research and treatment of cancer phase III trial. J Clin Oncol. 2006;24:2715–22.

    PubMed  Google Scholar 

  10. Bigner SH, Matthews MR, Rasheed BK, Wiltshire RN, Friedman HS, Friedman AH, Stenzel TT, Dawes DM, McLendon RE, Bigner DD. Molecular genetic aspects of oligodendrogliomas including analysis by comparative genomic hybridization. Am J Pathol. 1999;155:375–86.

    PubMed  CAS  Google Scholar 

  11. Von Deimling A, Louis DN, von Ammon K, Petersen I, Wiestler OD, Seizinger BR. Evidence for a tumor suppressor gene on chromosome 19q associated with human astrocytomas, oligodendrogliomas, and mixed gliomas. Cancer Res. 1992;52:4277–9.

    Google Scholar 

  12. Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP. Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol. 1994;145:1175–90.

    PubMed  CAS  Google Scholar 

  13. Reifenberger G, Louis DN. Oligodendroglioma: toward molecular definitions in diagnostic neuro-oncology. J Neuropathol Exp Neurol. 2003;62:111–26.

    PubMed  CAS  Google Scholar 

  14. Jenkins R, Blair H, Flynn H, Passe S, Law M, Ballman K, et al. t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q in human oligodendrogliomas. Sixteenth biennial international brain tumor research and therapy meeting, Silverado Resort and Spa, Napa Valley, CA, 2006.

    Google Scholar 

  15. Hartmann C, Johnk L, Kitange G, Wu Y, Ashworth LK, Jenkins RB, Louis DN. Transcript map of the 3.7 Mb D19S112-D19S246 candidate tumor suppressor region on the long arm of chromosome 19. Cancer Res. 2002;62:4100–8.

    PubMed  CAS  Google Scholar 

  16. Griffin CA, Burger P, Morsberger L, Yonescu R, Swierczynski S, Weingart JD, Murphy KM. Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. J Neuropathol Exp Neurol. 2006;65:988–94.

    PubMed  Google Scholar 

  17. Abrey LE, Louis DN, Paleologos N. Survey of treatment recommendations for anaplastic oligodendroglioma. Neuro Oncol. 2007;9:314–8.

    PubMed  CAS  Google Scholar 

  18. Brandes AA, Tosoni A, Cavallo G, Reni M, Franceschi E, Bonaldi L, Bertorelle R, Gardiman M, Ghimenton C, Iuzzolino P, Pession A, Blatt V, Ermani M, CIGNO. Correlation between O6-methylguanine DNA methyltransferase promoter methylation status, 1p and 19q deletions, and response to temozolomide in anaplastic and recurrent oligodendroglioma: a prospective GICNO study. J Clin Oncol. 2006;24:4746–53.

    PubMed  CAS  Google Scholar 

  19. Van den Bent MJ, Taphoorn MJ, Brandes AA, Menten J, Stupp R, Frenay M, Chinot O, Kros JM, van der Rijt CC, Vecht CJ, Allgeier A, Gorlia T, European Organization for research and Treatment of Cancer Brain Tumor Group. Phase II study of first-line chemotherapy with temozolomide in recurrent oligodendroglial tumors: the European Organization for Research and Treatment of Cancer Brain Tumor Group Study 26971. J Clin Oncol. 2003;21:2525–8.

    PubMed  Google Scholar 

  20. Vogelbaum MA, Berkey B, Peereboom D, Macdonald D, Giannini C, Suh JH, Jenkins R, Herman J, Brown P, Blumenthal DT, Biggs C, Schultz C, Mehta M. Phase II trial of ­pre-irradiation and concurrent temozolomide in patients with newly diagnosed anaplastic oligodendrogliomas and mixed anaplastic oligoastrocytomas: RTOG BR0131. Neuro Oncol. 2008;11:167.

    PubMed  Google Scholar 

  21. Lassman AB, Cloughesy T, DeAngelis L, et al. Chemotherapy with deferred radiotherapy for newly diagnosed anaplastic oligodendroglioma and anaplastic mixed glioma. Neuro Oncol. 2006;8:445.

    Google Scholar 

  22. Idbaih A, Marie Y, Pierron G, Brennetot C, Hoang-Xuan K, Kujas M, Mokhtari K, Sanson M, Lejeune J, Aurias A, Delattre O, Delattre JY. Two types of chromosome 1p losses with opposite significance in gliomas. Ann Neurol. 2005;58:483–7.

    PubMed  CAS  Google Scholar 

  23. van den Bent MJ, Looijenga LH, Langenberg K, Dinjens W, Graveland W, Uytdewilligen L, Sillevis Smitt PA, Jenkins RB, Kros JM. Chromosomal anomalies in oligodendroglial tumors are correlated with clinical features. Cancer. 2003;97:1276–84.

    PubMed  Google Scholar 

  24. Giannini C, Burger PC, Berkey BA, Cairncross JG, Jenkins RB, Mehta M, Curran WJ, Aldape K. Anaplastic oligodendroglial tumors: refining the correlation among histopathology, 1p 19q deletion and clinical outcome in Intergroup Radiation Therapy Oncology Group Trial 9402. Brain Pathol. 2008;18:360–9.

    PubMed  Google Scholar 

  25. Kanner AA, Staugaitis SM, Castilla EA, Chernova O, Prayson RA, Vogelbaum MA, Stevens G, Peereboom D, Suh J, Lee SY, Tubbs RR, Barnett GH. The impact of genotype on outcome in oligodendroglioma: validation of the loss of chromosome arm 1p as an important factor in clinical decision making. J Neurosurg. 2006;104:542–50.

    PubMed  Google Scholar 

  26. McDonald JM, See SJ, Tremont IW, Colman H, Gilbert MR, Groves M, Burger PC, Louis DN, Giannini C, Fuller G, Passe S, Blair H, Jenkins RB, Yang H, Ledoux A, Aaron J, Tipnis U, Zhang W, Hess K, Aldape K. The prognostic impact of histology and 1p/19q status in anaplastic oligodendroglial tumors. Cancer. 2005;104:1468–77.

    PubMed  CAS  Google Scholar 

  27. Hong C, Bollen AW, Costello JF. The contribution of genetic and epigenetic mechanisms to gene silencing in oligodendrogliomas. Cancer Res. 2003;63:7600–5.

    PubMed  CAS  Google Scholar 

  28. Trouillard O, Aguirre-Cruz L, Hoang-Xuan K, Marie Y, Delattre JY, Sanson M. Parental 19q loss and PEG3 expression in oligodendrogliomas. Cancer Genet Cytogenet. 2004;151:182–3.

    PubMed  CAS  Google Scholar 

  29. Wolf RM, Draghi N, Liang X, Dai C, Uhrbom L, Eklöf C, Westermark B, Holland EC, Resh MD. p190RhoGAP can act to inhibit PDGF-induced gliomas in mice: a putative tumor suppressor encoded on human chromosome 19q13.3. Genes Dev. 2003;17:476–87.

    PubMed  CAS  Google Scholar 

  30. Fallon KB, Palmer CA, Roth KA, Nabors LB, Wang W, Carpenter M, Banerjee R, Forsyth P, Rich K, Perry A. Prognostic value of 1p, 19q, 9p and 10q, and EGFR-FISH analysis in recurrent oligodendroglioma. J Neuropathol Exp Neurol. 2004;63:314–22.

    PubMed  CAS  Google Scholar 

  31. Zlatescu MC, TehraniYazdi A, Sasaki H, Megyesi JF, Betensky RA, Louis DN, Cairncross JG. Tumor location and growth pattern correlate with genetic signature in oligodendroglial neoplasms. Cancer Res. 2001;61:6713–5.

    PubMed  CAS  Google Scholar 

  32. Mueller W, Hartmann C, Hoffman A, Lanksch W, Kiwit J, Tonn J, Veelken J, Schramm J, Weller M, Wiestler OD, Louis DN, von Diemling A. Genetic signature of oligoastrocytomas correlates with tumor location and denotes distinct molecular subsets. Am J Pathol. 2002;161:313–9.

    PubMed  CAS  Google Scholar 

  33. Megyesi JF, Kachur E, Lee DH, Zlatescu MC, Betensky RA, Forsyth PA, Okada Y, Sasaki H, Mizoguchi M, Louis DN, Cairncross JG. Imaging correlates of molecular signatures in oligodendrogliomas. Clin Cancer Res. 2004;10:4303–6.

    PubMed  Google Scholar 

  34. Ochs K, Kaina B. Apoptosis induced by DNA damage O6-methylguanine is Bcl-2 and caspase-9/3 regulated and Fas/caspase-8 independent. Cancer Res. 2000;60:5815–24.

    PubMed  CAS  Google Scholar 

  35. Gerson SL. MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer. 2004;4:296–307.

    PubMed  CAS  Google Scholar 

  36. Liu L, Markowitz S, Gerson SL. Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide but not to 1,3-bis(2-chloroethyl) nitrosourea. Cancer Res. 1996;56:5375–9.

    PubMed  CAS  Google Scholar 

  37. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.

    PubMed  CAS  Google Scholar 

  38. Mollemann M, Wolter M, Felsberg J, Collins VP, Reifenberger G. Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int J Cancer. 2005;113:379–85.

    PubMed  Google Scholar 

  39. Brandes AA, Tosoni A, Cavallo G, et al. Correlations between O6-methylguanine DNA methyltransferase promoter methylation status, 1p and 19q deletions, and response to temozolomide in anaplastic and recurrent oligodendroglioma: a prospective GICNO study. J Clin Oncol. 2006;24:4746–53.

    PubMed  CAS  Google Scholar 

  40. Kaloshi G, Everhard S, Laigle-Donadey F, Marie Y, Navarro S, Mokhtari K, Idbaih A, Ducray F, Thillet J, Hoang-Xuan K, Delattre JY, Sanson M. Genetic markers predictive of chemosensitivity and outcome in gliomatosis cerebri. Neurology. 2008;70:590–5.

    PubMed  CAS  Google Scholar 

  41. Hoang-Xuan K, He J, Huguet S, Mokhtari K, Marie Y, Kujas M, Leuraud P, Capelle L, Delattre JY, Poirier J, Broët P, Sanson M. Molecular heterogeneity of oligodendrogliomas suggests alternative pathways in tumor progression. Neurology. 2001;57:1278–81. 30.

    PubMed  CAS  Google Scholar 

  42. Jeuken JW, Sprenger SH, Wesseling P, Macville MV, von Deimling A, Teepen HL, van Overbeeke JJ, Boerman RH. Identifi cation of subgroups of high-grade oligodendroglial tumors by comparative genomic hybridization. J Neuropathol Exp Neurol. 1999;58:606–12.

    PubMed  CAS  Google Scholar 

  43. Kraus JA, Koopmann J, Kaskel P, Maintz D, Bradner S, Schramm J, Louis DN, Wiestler OD, von Deimling A. Shared allelic losses on chromosomes 1p and 19q suggest a common origin of oligodendroglioma and oligoastrocytoma. J Neuropathol Exp Neurol. 1995;54:91–5.

    PubMed  CAS  Google Scholar 

  44. Dehais C, Laigle-Donadey F, Marie Y, Kujas M, Lejeune J, Benouaich-Amiel A, Pedretti M, Polivka M, Xuan KH, Thillet J, Delattre JY, Sanson M. Prognostic stratification of patients with anaplastic gliomas according to genetic profile. Cancer. 2006;107:1891–7.

    PubMed  CAS  Google Scholar 

  45. Idbaih A, Marie Y, Lucchesi C, Pierron G, Manié E, Raynal V, Mosseri V, Hoang-Xuan K, Kujas M, Brito I, Mokhtari K, Sanson M, Barillot E, Aurias A, Delattre JY, Delattre O. BAC array CGH distinguishes mutually exclusive alterations that define clinicogenetic subtypes of gliomas. Int J Cancer. 2008;122:1778–86.

    PubMed  CAS  Google Scholar 

  46. Idbaih A, Crinière E, Marie Y, Rousseau A, Mokhtari K, Kujas M, El Houfi Y, Carpentier C, Paris S, Boisselier B, Laigle-Donadey F, Thillet J, Sanson M, Hoang-Xuan K, Delattre JY. Gene amplification is a poor prognostic factor in anaplastic oligodendrogliomas. Neuro Oncol. 2008;10(4):540–7.

    PubMed  CAS  Google Scholar 

  47. Kouwenhoven K, Gorlia T, Kros J. EORTC 26951: prognosis of oligodendroglial tumors is an interplay of molecular, histological, and clinical characteristics. Neuro Oncol. 2007;9:546.

    Google Scholar 

  48. Trost D, Ehrler M, Fimmers R, Felsberg J, Sabel MC, Kirsch L, Schramm J, Wiestler OD, Reifenberger G, Weber RG. Identification of genomic aberrations associated with shorter overall survival in patients with oligodendroglial tumors. Int J Cancer. 2007;120:2368–76.

    PubMed  CAS  Google Scholar 

  49. Lassman AB, Holland EC. Molecular biology and genetic models of gliomas and medulloblastomas. In: McLendon RE, Bigner DD, Rosenblum MR, Bruner JM, editors. Russell and Rubinstein’s pathology of tumors of the nervous system. 7th ed. London: Arnold Health Sciences; 2006. p. 1039–91.

    Google Scholar 

  50. Wen PY, Yung WK, Lamborn KR, et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res. 2006;12:4899–907.

    PubMed  CAS  Google Scholar 

  51. Sasaki H, Zlatescu MC, Betensky RA, et al. PTEN is a target of chromosome 10q loss in anaplastic oligodendrogliomas and PTEN alterations are associated with poor prognosis. Am J Pathol. 2001;159:359–67.

    PubMed  CAS  Google Scholar 

  52. Collaborative Staging Task Force of the American Joint Committee on Cancer. Collaborative staging manual and coding instructions, version 1.0. Chicago, Illinois: American Joint Committee on Cancer. Bethesda, Maryland: U.S. Dept of Health and Human Services; 2004.

    Google Scholar 

  53. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    PubMed  Google Scholar 

  54. Rong Y, Durden DL, Van Meir EG, Brat DJ. ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol. 2006;65:529–39.

    PubMed  Google Scholar 

  55. Burger PC, Kleihues P. Cytologic composition of the untreated glioblastoma with implications for evaluation of needle biopsies. Cancer. 1989;63:2014–23.

    PubMed  CAS  Google Scholar 

  56. Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One. 2009;4:e7752.

    PubMed  Google Scholar 

  57. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    PubMed  CAS  Google Scholar 

  58. Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature. 2010;463:318–25.

    PubMed  CAS  Google Scholar 

  59. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.

    PubMed  CAS  Google Scholar 

  60. Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N Engl J Med. 2005;353:811–22.

    PubMed  CAS  Google Scholar 

  61. Xie Z, Chin LS. Molecular and cell biology of brain tumor stem cells: lessons from neural progenitor/stem cells. Neurosurg Focus. 2008;24:E25.

    PubMed  Google Scholar 

  62. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 2009;8:806–23.

    PubMed  CAS  Google Scholar 

  63. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–21.

    PubMed  CAS  Google Scholar 

  64. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39:193–206.

    PubMed  Google Scholar 

  65. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–10.

    PubMed  CAS  Google Scholar 

  66. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    PubMed  CAS  Google Scholar 

  67. Kania G, Corbeil D, Fuchs J, Tarasov KV, Blyszczuk P, Huttner WB, Boheler KR, Wobus AM. Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells. 2005;23:791–804.

    PubMed  CAS  Google Scholar 

  68. Weigmann A, Corbeil D, Hellwig A, Huttner WB. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A. 1997;94:12425–30.

    PubMed  CAS  Google Scholar 

  69. Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende CC. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res. 2008;14:123–9.

    PubMed  CAS  Google Scholar 

  70. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    PubMed  CAS  Google Scholar 

  71. Wang J, Sakariassen PO, Tsinkalovsky O, Immervoll H, Boe SO, Svendsen A, Prestegarden L, Rosland G, Thorsen F, Stuhr L, et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer. 2008;122:761–8.

    PubMed  CAS  Google Scholar 

  72. Griguer CE, Oliva CR, Gobin E, Marcorelles P, Benos DJ, Lancaster Jr JR, Gillespie GY. CD133 is a marker of bioenergetic stress in human glioma. PLoS One. 2008;3:e3655.

    PubMed  Google Scholar 

  73. Michalczyk K, Ziman M. Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol. 2005;20:665–71.

    PubMed  CAS  Google Scholar 

  74. Cattaneo E, McKay R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature. 1990;347:762–5.

    PubMed  CAS  Google Scholar 

  75. Vescovi AL, Reynolds BA, Fraser DD, Weiss S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron. 1993;11:951–66.

    PubMed  CAS  Google Scholar 

  76. Dahlstrand J, Collins VP, Lendahl U. Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res. 1992;52:5334–41.

    PubMed  CAS  Google Scholar 

  77. Rutka JT, Ivanchuk S, Mondal S, Taylor M, Sakai K, Dirks P, Jun P, Jung S, Becker LE, Ackerley C. Co-expression of nestin and vimentin intermediate filaments in invasive human astrocytoma cells. Int J Dev Neurosci. 1999;17:503–15.

    PubMed  CAS  Google Scholar 

  78. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355:1253–61.

    PubMed  CAS  Google Scholar 

  79. Zaidi HA, Kosztowski T, DiMeco F, Quinones-Hinojosa A. Origins and clinical implications of the brain tumor stem cell hypothesis. J Neurooncol. 2009;93:49–60.

    PubMed  Google Scholar 

  80. von Deimling A, Korshunov A, Hartmann C. The next generation of glioma biomarkers: MGMT methylation, BRAF fusions and IDH1 mutations. Brain Pathol. 2011;21:74–87.

    Google Scholar 

  81. Suri V, Jha P, Sharma MC, Sarkar C. O6 -methylguanine DNA methyltransferase gene promoter methylation in high-grade gliomas: a review of current status. Neurol India. 2011;59:229–35.

    PubMed  Google Scholar 

  82. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    PubMed  CAS  Google Scholar 

  83. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343:1350–4.

    PubMed  CAS  Google Scholar 

  84. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.

    PubMed  CAS  Google Scholar 

  85. Weller M, Felsberg J, Hartmann C, Berger H, Steinbach JP, Schramm J, Westphal M, Schackert G, Simon M, Tonn JC, et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol. 2009;27:5743–50.

    PubMed  CAS  Google Scholar 

  86. Wick W, Weller M. Adjuvant therapy. Recent Results Cancer Res. 2009;171:141–53.

    PubMed  Google Scholar 

  87. Riemenschneider MJ, Jeuken JW, Wesseling P, Reifenberger G. Molecular diagnostics of gliomas: state of the art. Acta Neuropathol. 2010;120:567–84.

    PubMed  CAS  Google Scholar 

  88. Vogelbaum MA, Berkey B, Peereboom D, Macdonald D, Giannini C, Suh JH, Jenkins R, Herman J, Brown P, Blumenthal DT, et al. Phase II trial of preirradiation and concurrent temozolomide in patients with newly diagnosed anaplastic oligodendrogliomas and mixed anaplastic oligoastrocytomas: RTOG BR0131. Neuro Oncol. 2009;11:167–75.

    PubMed  CAS  Google Scholar 

  89. Weller M, Stupp R, Reifenberger G, Brandes AA, van den Bent MJ, Wick W, Hegi ME. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol. 2010;6:39–51.

    PubMed  CAS  Google Scholar 

  90. Yan H, Bigner DD, Velculescu V, Parsons DW. Mutant metabolic enzymes are at the origin of gliomas. Cancer Res. 2009;69:9157–9.

    PubMed  CAS  Google Scholar 

  91. Nobusawa S, Watanabe T, Kleihues P, Ohgaki H. IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res. 2009;15:6002–7.

    PubMed  CAS  Google Scholar 

  92. Labussiere M, Sanson M, Idbaih A, Delattre JY. IDH1 gene mutations: a new paradigm in glioma prognosis and therapy? Oncologist. 2010;15:196–9.

    PubMed  CAS  Google Scholar 

  93. Aghili M, Zahedi F, Rafiee E. Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J Neurooncol. 2009;91:233–6.

    PubMed  Google Scholar 

  94. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009;324:261–5.

    PubMed  CAS  Google Scholar 

  95. Yan H, Parsons W, Jin G, McLendon R, Rasheed BA, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.

    PubMed  CAS  Google Scholar 

  96. Packer RJ. Chemotherapy for medulloblastoma/primitive neuroectodermal tumors of the posterior fossa. Ann Neurol. 1990;28:823–8.

    PubMed  CAS  Google Scholar 

  97. Fernandez-Teijeiro A, Betensky RA, Sturla LM, Kim JY, Tamayo P, Pomeroy SL. Combining gene expression profiles and clinical parameters for risk stratification in medulloblastomas. J Clin Oncol. 2004;22:994–8.

    PubMed  CAS  Google Scholar 

  98. Danoff BF, Cowchc S, Marquette C, Mulingrew L, Kramer S. Assessment f the long-term effects of primary radiation therapy for brain tumours in children. Cancer. 1982;49:1580–6.

    PubMed  CAS  Google Scholar 

  99. Mostow EN, Byrne, Connelly RR, Mulvihill JJ. Quality of life in longterm survivors of CNS tumours of childhood and adolescence. J Clin Oncol. 1991;9:592–9.

    PubMed  CAS  Google Scholar 

  100. Ellenberg L, McComb JC, Siegel SE, Stowe S. Factors affecting intellectual outcome in paediatric brain tumour patients. Neurosurgery. 1987;21:638–44.

    PubMed  CAS  Google Scholar 

  101. Packer RJ, Vezina G. Management of and prognosis with medulloblastoma. Arch Neurol. 2008;65(11):1419–24.

    PubMed  Google Scholar 

  102. Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J, Wittmann A, Devens F, Gerber NU, Joos S, Kulozik A, Reifenberger G, Rutkoski S, Wiestler OD, Radlwimmer B, Scheurlen W, Lichter P, Korshunov A. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol. 2009;27(10):1627–36.

    PubMed  Google Scholar 

  103. Eberhart CG, Tihan T, Burger PC. Nuclear localization and mutation of beta-catenin in medulloblastomas. J Neuropathol Exp Neurol. 2000;59:333–7.

    PubMed  CAS  Google Scholar 

  104. Huang H, Mahler-Araujo BM, Sankila A, Chimelli L, Yonekawa Y, Kleihues P, Ohgaki H. APC mutations in sporadic medulloblastomas. Am J Pathol. 2000;156:433–7.

    PubMed  CAS  Google Scholar 

  105. Dahmen RP, Koch A, Denkhaus D, Tonn JC, Sorensen N, Berthold F, Behrens J, Birchmeier W, Wiestler OD, Pietsch T. Deletions of AXIN1, a component of the WNT/Wingless pathway, on sporadic medulloblastomas. Cancer Res. 2001;61:7039–43.

    PubMed  CAS  Google Scholar 

  106. Schwalbe EC, Lindsey JC, Straughton D, Hogg TL, Cole M, Megahed H, Ryan SL, Luscher ME, Taylor MD, Gilbertson RJ, Ellison DW, Bailey S, Clifford SC. Rapid diagnosis of medulloblastoma molecular subgroups. Clin Cancer Res. 2011;17:1883–94.

    PubMed  CAS  Google Scholar 

  107. Eberhart CG, Kratz J, Wang Y, Summers K, Stearns D, Cohen K, Dang C, Burger P. Histopathological and molecular prognostic markersin medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J Neuropathol Exp Neurol. 2004;63(5):441–9.

    PubMed  CAS  Google Scholar 

  108. Scheurlen WG, Schwabe GC, Joos S, Mollenhaur J, Sorensen N, Kuhl J. Molecular analysis of childhood primitive neuroectodermal tumors defines markers associated with poor outcome. J Clin Oncol. 1998;16(7):2478–85.

    PubMed  CAS  Google Scholar 

  109. Grotzer MA, Janss AJ, Phillips PC, Trojanowski JQ. Neurotrophin receptor TrkC predicts good clinical outcome in medulloblastoma and other primitive neuroectodermal brain tumors. Klin Padiatr. 2000;212(4):196–9.

    PubMed  CAS  Google Scholar 

  110. Segal RA, Goumnerova LC, Kwon YK, Stiles CD, Pomeroy SL. Expression of the n­eurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Natl Acad Sci U S A. 1994;91:12867–71.

    PubMed  CAS  Google Scholar 

  111. Gessi M, von Bueren AO, Rutkowski S, Pietsch T. p53 expression predicts dismal outcome for medulloblastoma patients with metastatic disease. J Neurooncol. 2011;106:135.

    PubMed  Google Scholar 

  112. Batra SK, McLendon RE, Koo JS, Castelino-Prabhu S, Fuchs HE, Krischer JP, Friedman HS, Bigner DD, Bigner SH. Prognostic implications of chromosome 17p deletions in human medulloblastomas. J Neurooncol. 1995;24:39–45.

    PubMed  CAS  Google Scholar 

  113. Cogen P. Prognostic significance of molecular genetic markers in childhood brain tumors. Pediatr Neurosurg. 1991;17:245–50.

    PubMed  Google Scholar 

  114. Scheurlen WG, Seranski P, Mincheva A, Kühl J, Sörensen N, Krauss J, Lichter P, Poustka A, Wilgenbus KK. High-resolution deletion mapping of chromosome arm 17p in childhood neuroectodermal tumors reveals a common chromosomal disruption within the Smith-Magenis region, an unstable region in chromosome band 17p11.2. Genes Chromosomes Cancer. 1997;18:50–8.

    PubMed  CAS  Google Scholar 

  115. Emadian SM, McDonald JD, Gerken SC, Fults D. Corrolation of chromosome17p loss with clinical outcome in medulloblastoma. Clin Cancer Res. 1996;2:1559–64.

    PubMed  CAS  Google Scholar 

  116. Lo KC, Ma C, Bundy BN, Pomeroy SL, Eberhart CG, Cowell JK. Gain of 1q is a potential prognostic marker for survival in medulloblastoma. Clin Cancer Res. 2007;13(23):7022–8.

    PubMed  CAS  Google Scholar 

  117. De Bortoli M, Castellino RC, Lu XY, Deyo J, Sturla LM, Adesina AM, Perlaky L, Pomeroy SL, Lau CC, Man TK, Rao PH, Kim JY. Medulloblastoma outcome is adversely associated with overexpression of EEF1D, RPL30, and RPS20 on the long arm of chromosome 8. BMC Cancer. 2006;6:223.

    PubMed  Google Scholar 

  118. Tabori U, Baskin B, Shago M, Alon N, Taylor MD, Ray PN, Bouffet E, Malkin D, Hawkins C. Universal poor survival in children with medulloblastoma harboring somatic TP53 mutations. J Clin Oncol. 2010;28:1345–50.

    PubMed  CAS  Google Scholar 

  119. Pfaff E, Remke M, Sturm D, Benner A, Witt H, Milde T, von Bueren AO, Wittmann A, Schöttler A, Jorch N, Graf N, Kulozik AE, Witt O, Scheurlen W, von Deimling A, Rutkowski S, Taylor MD, Tabori U, Lichter P, Korshunov A, Pfister SM. TP53 mutatino is frequently associated with CTNNB1 mutation MYCN amplification and is compatible with long-term survival in medulloblastoma. J Clin Oncol. 2010;28:5188–96.

    PubMed  CAS  Google Scholar 

  120. Lindsey JC, Hill RM, Megahed H, Lusher ME, Schwalbe EC, Cole M, Hogg TL, Gilbertson RJ, Ellision DW, Bailey S, Clifford S. TP53 mutations in favorable-risk Wnt/Wingless-subtype medulloblastomas. J Clin Oncol. 2011;29(12):e344–6.

    PubMed  CAS  Google Scholar 

  121. Pfister S, Rea S, Taipale M, Mendrzyk F, Straub B, Ittrich C, Thuerigen O, Sinn HP, Akhtar A, Lichter P. The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer. 2008;122:1207–13.

    PubMed  CAS  Google Scholar 

  122. Jung CS, Foerch C, Schanzer A, Heck A, Plate KH, Seifert V, Steinmetz H, Raabe A, Sitzer M. Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain. 2007;130:3336–41.

    PubMed  CAS  Google Scholar 

  123. Lin Y, Jiang T, Zhou K, Xu L, Chen B, Li G, Qiu X, Zhang W, Song SW. Plasma IGFBP-2 levels predict clinical outcomes of patients with high-grade gliomas. Neuro Oncol. 2009;11:468–76.

    PubMed  CAS  Google Scholar 

  124. Ludwig N, Keller A, Comtesse N, Rheinheimer S, Pallasch C, Fischer U, Fassbender K, Steudel WI, Lenhof HP, Meese E. Pattern of serum autoantibodies allows accurate distinction between a tumor and pathologies of the same organ. Clin Cancer Res. 2008;14:4767–74.

    PubMed  CAS  Google Scholar 

  125. Keller A, Ludwig N, Comtesse N, Hildebrandt A, Meese E, Lenhof HP. A minimally invasive multiple marker approach allows highly efficient detection of meningioma tumors. BMC Bioinformatics. 2006;7:539.

    PubMed  Google Scholar 

  126. Weaver KD, Grossman SA, Herman JG. Methylated tumor-specific DNA as a plasma biomarker in patients with glioma. Cancer Invest. 2006;24:35–40.

    PubMed  CAS  Google Scholar 

  127. Petrik V, Saadoun S, Loosemore A, Hobbs J, Opstad KS, Sheldon J, Tarelli E, Howe FA, Bell BA, Papadopoulos MC. Serum alpha 2-HS glycoprotein predicts survival in patients with glioblastoma. Clin Chem. 2008;54:713–22.

    PubMed  CAS  Google Scholar 

  128. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY, Jain RK. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11:83–95.

    PubMed  CAS  Google Scholar 

  129. Purow B. The elephant in the room: do microRNA-based therapies have a realistic chance of succeeding for brain tumors such as glioblastoma? J Neurooncol. 2010;103:429.

    PubMed  Google Scholar 

  130. Cho WC. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 2010;42:1273–81.

    PubMed  CAS  Google Scholar 

  131. Polyak K, Hahn WC. Roots and stems: stem cells in cancer. Nat Med. 2006;12(3):296–300.

    PubMed  CAS  Google Scholar 

  132. Denysenko T, Gennero L, Roos MA, Melcarne A, Juenermann C, Faccani G, Morra I, Cavallo G, Reguzzi S, Pescarmona G, Ponzetto A. Glioblastoma cancer stem cells: heterogeneity, microenvironment and related therapeutic strategies. Cell Biochem Funct. 2010;28:343–51.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Glantz M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zalatimo, O., Zoccoli, C.M., Patel, A., Weston, C.L., Glantz, M. (2013). Impact of Genetic Targets on Primary Brain Tumor Therapy: What’s Ready for Prime Time?. In: El-Deiry, W. (eds) Impact of Genetic Targets on Cancer Therapy. Advances in Experimental Medicine and Biology, vol 779. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6176-0_12

Download citation

Publish with us

Policies and ethics