Advertisement

Natural Antioxidants in the Pharmacological Treatment of Rheumatic Immune and Inflammatory Diseases

  • Rosaria Meli
  • Giuseppina Mattace Raso
Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

Natural antioxidants, both supplements and diets, have long be advocated for the treatment of a wide range of serious diseases, including rheumatoid arthritis, osteoarthritis, and other inflammatory and immune diseases. Anyway, their therapeutic role has been questioned on the bases of their inefficacy or even for their detrimental effects [1]. Moreover, it is unrealistic to expect that natural antioxidants by themselves could solve the basic disease problem, since reactive oxygen species represent only one subset of a vast panorama of mediators involved in the pathogenesis of inflammatory and rheumatic disorders. On the other hand, for the majority of the natural antioxidants, a long-term “curative” effect has been not proven and controlled clinical studies on these compounds are still lacking. This overview suggests that several encouraging evidence exists for some of the natural antioxidants reported as treatment of common rheumatic conditions, but it also highlights the relative paucity and/or incompleteness of these studies. Anyway, it is conceivable to argue that the association of standard therapies and natural products with antioxidant activity could better control inflammation in rheumatic pathologies and could constitute a valuable support for the patients.

Keywords

Rheumatoid Arthritis Rheumatoid Arthritis Patient Synovial Fibroblast Sesquiterpene Lactone Adjuvant Arthritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ADAMTS

A disintegrin and metalloproteinase with thrombospondin motifs

AP-1

Activator protein 1

CIA

Collagen-induced arthritis

CoQ10

Coenzyme Q10

COX

Cyclooxygenase

EGCG

Epigallocatechin 3-gallate

ENA-78

Epithelial neutrophil-activating peptide 78

Gro-α

Growth-regulated oncogene

iNOS

Inducible nitric oxide synthase

JNK

c-Jun-N-terminal kinase

Mcl-1

Myeloid cell leukemia-1

MCP-1

Monocyte chemotactic protein-1

MDA

Malondialdehyde

MMP

Metalloproteinase

NFAT

Nuclear factor of activated T-cells

NF-κB

Nuclear factor-κB

NO

Nitric oxide

NSAID

Nonsteroidal anti-inflammatory drugs

OA

Osteoarthritis

PGE2

Prostaglandin E2

RA

Rheumatoid arthritis

RANKL

Receptor activator of nuclear factor kappa-B ligand

RANTES

Regulated upon activation, normal T-cell expressed, and secreted

ROS

Reactive oxygen species

SOD

Superoxide dismutase

References

  1. 1.
    Perera RM, Bardeesy N (2011) Cancer: when antioxidants are bad. Nature 475:43–44PubMedCrossRefGoogle Scholar
  2. 2.
    Greenwald RA (1991) Oxygen radicals, inflammation, and arthritis: pathophysiological considerations and implications for treatment. Semin Arthritis Rheum 20:219–240PubMedCrossRefGoogle Scholar
  3. 3.
    Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G (2006) The NF-κB-mediated control of ROS and JNK signaling. Histol Histopathol 21:69–80PubMedGoogle Scholar
  4. 4.
    Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071PubMedCrossRefGoogle Scholar
  5. 5.
    Samuels J, Krasnokutsky S, Abramson SB (2008) Osteoarthritis: a tale of three tissues. Bull NYU Hosp Jt Dis 66:244–250PubMedGoogle Scholar
  6. 6.
    Brinckerhoff CE, Matrisian LM (2002) Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3:207–214PubMedCrossRefGoogle Scholar
  7. 7.
    Dahlberg L, Billinghurst RC, Manner P, Nelson F, Webb G, Ionescu M, Reiner A, Tanzer M, Zukor D, Chen J, van Wart HE, Poole AR (2000) Selective enhancement of collagenase-mediated cleavage of resident type II collagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that spares collagenase 1 (matrix metalloproteinase 1). Arthritis Rheum 43:673–682PubMedCrossRefGoogle Scholar
  8. 8.
    Sklodowska M, Gromadzinska J, Biernacka M, Wasowicz W, Wolkanin P, Marszalek A, Brozik H, Pokuszynska K (1996) Vitamin E, thiobarbituric acid reactive substance concentrations and superoxide dismutase activity in the blood of children with juvenile rheumatoid arthritis. Clin Exp Rheumatol 14:433–439PubMedGoogle Scholar
  9. 9.
    Blake DR, Merry P, Unsworth J, Kidd BL, Outhwaite JM, Ballard R, Morris CJ, Gray L, Lunec J (1989) Hypoxic-reperfusion injury in the inflamed human joint. Lancet 1:289–293PubMedCrossRefGoogle Scholar
  10. 10.
    Nurcombe HL, Bucknall RC, Edwards SW (1991) Neutrophils isolated from the synovial fluid of patients with rheumatoid arthritis; priming and activation in vivo. Ann Rheum Dis 50:147–153PubMedCrossRefGoogle Scholar
  11. 11.
    Zwerina J, Redlich K, Schett G, Smolen J (2005) Pathogenesis of rheumatoid arthritis: targeting cytokines. Ann NY Acad Sci 1051:716–729PubMedCrossRefGoogle Scholar
  12. 12.
    Sarban S, Kocyigit A, Yazar M, Isikan UE (2005) Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Clin Biochem 38:981–986PubMedCrossRefGoogle Scholar
  13. 13.
    Bae SC, Kim SJ, Sung MK (2003) Inadequate antioxidant nutrient intake and altered plasma antioxidant status of rheumatoid arthritis patients. J Am Coll Nutr 22:311–315PubMedGoogle Scholar
  14. 14.
    Kiziltunc A, Kogalgil S, Cerrahoglu L (1998) Carnitine and antioxidant levels in patients with rheumatoid arthritis. Scand J Rheumatol 27:441–445PubMedCrossRefGoogle Scholar
  15. 15.
    Siddiqui MA (2007) The efficacy and tolerability of newer biologics in rheumatoid arthritis: best current evidence. Curr Opin Rheumatol 19:308–313PubMedCrossRefGoogle Scholar
  16. 16.
    van Vollenhoven RF (2009) Treatment of rheumatoid arthritis: state of the art 2009. Nat Rev Rheumatol 5:531–541PubMedCrossRefGoogle Scholar
  17. 17.
    Fox BA, Stephens MM (2009) Glucosamine/chondroitin/primorine combination therapy for osteoarthritis. Drugs Today 45:21–31PubMedCrossRefGoogle Scholar
  18. 18.
    Felson DT (2009) Developments in the clinical understanding of osteoarthritis. Arthritis Res Ther 11:203PubMedCrossRefGoogle Scholar
  19. 19.
    Bauerová K, Poništ S, Mihalová D, Dráfi F, Kuncírová V (2011) Utilization of adjuvant arthritis model for evaluation of new approaches in rheumatoid arthritis therapy focused on regulation of immune processes and oxidative stress. Interdiscip Toxicol 4:33–39PubMedCrossRefGoogle Scholar
  20. 20.
    Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, New YorkGoogle Scholar
  21. 21.
    Golbidi S, Laher I (2009) Antioxidant therapy in human endocrine disorders. Med Sci Monit 16:RA9–RA24Google Scholar
  22. 22.
    Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396–3402PubMedCrossRefGoogle Scholar
  23. 23.
    Kumazawa Y, Kawaguchi K, Takimoto H (2006) Immunomodulating effects of flavonoids on acute and chronic inflammatory responses caused by tumor necrosis factor alpha. Curr Pharm Des 12:4271–4279PubMedCrossRefGoogle Scholar
  24. 24.
    Mattace Raso G, Meli R, Di Carlo G, Pacilio M, Di Carlo R (2001) Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A.1. Life Sci 68:921–931CrossRefGoogle Scholar
  25. 25.
    Di Carlo G, Mascolo N, Izzo AA, Capasso F (1999) Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 65:337–353PubMedCrossRefGoogle Scholar
  26. 26.
    Graf BA, Milbury PE, Blumberg JB (2005) Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food 8:281–290PubMedCrossRefGoogle Scholar
  27. 27.
    Lotito SB, Frei B (2006) Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med 41:1727–1746PubMedCrossRefGoogle Scholar
  28. 28.
    Halliwell B (2007) Flavonoids: a re-run of the carotenoids story? Novartis Found Symp 282:93–101, discussion 101–104, 212–108PubMedCrossRefGoogle Scholar
  29. 29.
    Cooper R, Morre DJ, Morre DM (2005) Medicinal benefits of green tea: part I. Review of noncancer health benefits. J Altern Complement Med 11:521–528PubMedCrossRefGoogle Scholar
  30. 30.
    Ahmed S, Rahman A, Hasnain A, Lalonde M, Goldberg VM, Haqqi TM (2002) Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1 beta-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. Free Radic Biol Med 33:1097–1105PubMedCrossRefGoogle Scholar
  31. 31.
    Singh R, Ahmed S, Islam N, Goldberg VM, Haqqi TM (2002) Epigallocatechin-3-gallate inhibits interleukin-1β-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: suppression of nuclear factor κB activation by degradation of the inhibitor of nuclear factor κB. Arthritis Rheum 46:2079–2086PubMedCrossRefGoogle Scholar
  32. 32.
    Singh R, Ahmed S, Malemud CJ, Goldberg VM, Haqqi TM (2003) Epigallocatechin-3-gallate selectively inhibits interleukin-1beta-induced activation of mitogen activated protein kinase subgroup c-Jun N-terminal kinase in human osteoarthritis chondrocytes. J Orthop Res 21:102–109PubMedCrossRefGoogle Scholar
  33. 33.
    Ahmed S, Wang N, Lalonde M, Goldberg VM, Haqqi TM (2004) Green tea polyphenol epigallocatechin-3-gallate (EGCG) differentially inhibits interleukin-1 beta-induced expression of matrix metalloproteinase-1 and -13 in human chondrocytes. J Pharmacol Exp Ther 308:767–773PubMedCrossRefGoogle Scholar
  34. 34.
    Adcocks C, Collin P, Buttle DJ (2002) Catechins from green tea (Camellia sinensis) inhibit bovine and human cartilage proteoglycan and type II collagen degradation in vitro. J Nutr 132:341–346PubMedGoogle Scholar
  35. 35.
    Vankemmelbeke MN, Jones GC, Fowles C, Ilic MZ, Handley CJ, Day AJ, Knight CG, Mort JS, Buttle DJ (2003) Selective inhibition of ADAMTS-1, -4 and -5 by catechin gallate esters. Eur J Biochem 270:2394–2403PubMedCrossRefGoogle Scholar
  36. 36.
    Andriamanalijaona R, Kypriotou M, Bauge C, Renard E, Legendre F, Raoudi M, Boumediene K, Gatto H, Monginoux P, Pujol JP (2005) Comparative effects of 2 antioxidants, selenomethionine and epigallocatechin-gallate, on catabolic and anabolic gene expression of articular chondrocytes. J Rheumatol 32:1958–1967PubMedGoogle Scholar
  37. 37.
    Rasheed Z, Anbazhagan AN, Akhtar N, Ramamurthy S, Voss FR, Haqqi TM (2009) Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tumor necrosis factor-alpha and matrix metalloproteinase-13 in human chondrocytes. Arthritis Res Ther 11:R71PubMedCrossRefGoogle Scholar
  38. 38.
    Goo HC, Hwang YS, Choi YR, Cho HN, Suh H (2003) Development of collagenase resistant collagen and its interaction with adult human dermal fibroblasts. Biomaterials 24:5099–5113PubMedCrossRefGoogle Scholar
  39. 39.
    Bae JY, Matsumura K, Wakitani S, Kawaguchi A, Tsutsumi S, Hyon SH (2009) Beneficial storage effects of epigallocatechin-3-o-gallate on the articular cartilage of rabbit osteochondral allografts. Cell Transplant 18:505–512PubMedCrossRefGoogle Scholar
  40. 40.
    Han DW, Bae JY, Matsumura K, Wakitani S, Nawata M, Hyon SH (2010) Non-frozen preservation of articular cartilage by epigallocatechin-3-gallate reversibly regulating cell cycle and NF-κB expression. Tissue Eng Part A 16:593–603Google Scholar
  41. 41.
    Hafeez BB, Ahmed S, Wang N, Gupta S, Zhang A, Haqqi TM (2006) Green tea polyphenols-induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregulation of nuclear factor-κB. Toxicol Appl Pharmacol 216:11–19PubMedCrossRefGoogle Scholar
  42. 42.
    Lin SK, Chang HH, Chen YJ, Wang CC, Galson DL, Hong CY, Kok SH (2008) Epigallocatechin-3-gallate diminishes CCL2 expression in human osteoblastic cells via up-regulation of phosphatidylinositol 3-Kinase/Akt/Raf-1 interaction: a potential therapeutic benefit for arthritis. Arthritis Rheum 58:3145–3156PubMedCrossRefGoogle Scholar
  43. 43.
    Tokuda H, Takai S, Hanai Y, Matsushima-Nishiwaki R, Hosoi T, Harada A, Ohta T, Kozawa O (2007) (-)-Epigallocatechin gallate suppresses endothelin-1-induced interleukin-6 synthesis in osteoblasts: inhibition of p44/p42 MAP kinase activation. FEBS Lett 581:1311–1316PubMedCrossRefGoogle Scholar
  44. 44.
    Kamon M, Zhao R, Sakamoto K (2009) Green tea polyphenol (-)-epigallocatechin gallate suppressed the differentiation of murine osteoblast MC3T3-E1 cell. Cell Biol Int 34:109–116PubMedGoogle Scholar
  45. 45.
    Lee JH, Jin H, Shim HE, Kim HN, Ha H, Lee ZH (2010) Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-fos expression and suppressing the NF-kB signal. Mol Pharmacol 77:17–25PubMedCrossRefGoogle Scholar
  46. 46.
    Ahmed S, Pakozdi A, Koch AE (2006) Regulation of interleukin-1β-induced chemokine production and matrix metalloproteinase 2 activation by epigallocatechin-3-gallate in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 54:2393–2401PubMedCrossRefGoogle Scholar
  47. 47.
    Corps AN, Curry VA, Buttle DJ, Hazleman BL, Riley GP (2004) Inhibition of interleukin-1β-stimulated collagenase and stromelysin expression in human tendon fibroblasts by epigallocatechin gallate ester. Matrix Biol 23:163–169PubMedCrossRefGoogle Scholar
  48. 48.
    Yun HJ, Yoo WH, Han MK, Lee YR, Kim JS, Lee SI (2008) Epigallocatechin-3-gallate suppresses TNF-α-induced production of MMP-1 and -3 in rheumatoid arthritis synovial fibroblasts. Rheumatol Int 29:23–29PubMedCrossRefGoogle Scholar
  49. 49.
    Ahmed S, Silverman MD, Marotte H, Kwan K, Matuszczak N, Koch AE (2009) Downregulation of myeloid cell leukemia 1 by epigallocatechin-3-gallate sensitizes rheumatoid arthritis synovial fibroblasts to tumor necrosis factor alpha-induced apoptosis. Arthritis Rheum 60:1282–1293PubMedCrossRefGoogle Scholar
  50. 50.
    Pope RM (2002) Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat Rev Immunol 2:527–535PubMedCrossRefGoogle Scholar
  51. 51.
    Haqqi TM, Anthony DD, Gupta S, Ahmad N, Lee MS, Kumar GK, Mukhtar H (1999) Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proc Natl Acad Sci USA 96:4524–4529PubMedCrossRefGoogle Scholar
  52. 52.
    Lin RW, Chen CH, Wang YH, Ho ML, Hung SH, Chen IS, Wang GJ (2009) (-)-Epigallocatechin gallate inhibition of osteoclastic differentiation via NF-κB. Biochem Biophys Res Commun 379:1033–1037PubMedCrossRefGoogle Scholar
  53. 53.
    Morinobu A, Biao W, Tanaka S, Horiuchi M, Jun L, Tsuji G, Sakai Y, Kurosaka M, Kumagai S (2008) (-)-Epigallocatechin-3-gallate suppresses osteoclast differentiation and ameliorates experimental arthritis in mice. Arthritis Rheum 58:2012–2018PubMedCrossRefGoogle Scholar
  54. 54.
    Ahmed S, Marotte H, Kwan K, Ruth JH, Campbell PL, Rabquer BJ, Pakozdi A, Koch AE (2008) Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling by enhancing soluble gp130 production. Proc Natl Acad Sci USA 105:14692–14697PubMedCrossRefGoogle Scholar
  55. 55.
    Kim HR, Rajaiah R, Wu QL, Satpute SR, Tan MT, Simon JE, Berman BM, Moudgil KD (2008) Green tea protects rats against autoimmune arthritis by modulating disease-related immune events. J Nutr 138:2111–2116PubMedCrossRefGoogle Scholar
  56. 56.
    Marotte H, Ruth JH, Campbell PL, Koch AE, Ahmed S (2010) Green tea extract inhibits chemokine production, but up-regulates chemokine receptor expression, in rheumatoid arthritis synovial fibroblasts and rat adjuvant-induced arthritis. Rheumatology (Oxford) 49:467–479CrossRefGoogle Scholar
  57. 57.
    Koch AE (2005) Chemokines and their receptors in rheumatoid arthritis: future targets? Arthritis Rheum 52:710–721PubMedCrossRefGoogle Scholar
  58. 58.
    Patisaul HB, Jefferson W (2010) The pros and cons of phytoestrogens. Front Neuroendocrinol 31:400–419PubMedCrossRefGoogle Scholar
  59. 59.
    Relic B, Zeddou M, Desoroux A, Beguin Y, de Seny D, Malaise MG (2009) Genistein induces adipogenesis but inhibits leptin induction in human synovial fibroblasts. Lab Invest 89:811–822PubMedCrossRefGoogle Scholar
  60. 60.
    Yen JH, Yang DJ, Chen MC, Hsieh YF, Sun YS, Tsay GJ (2010) Glycine tomentella Hayata inhibits IL-1β and IL-6 production, inhibits MMP-9 activity, and enhances RAW264.7 macrophage clearance of apoptotic cells. J Biomed Sci 17:83PubMedCrossRefGoogle Scholar
  61. 61.
    Lättig J, Böhl M, Fischer P, Tischer S, Tietböhl C, Menschikowski M, Gutzeit HO, Metz P, Pisabarro MT (2007) Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: rationale for lead design. J Comput Aided Mol Des 21:473–483PubMedCrossRefGoogle Scholar
  62. 62.
    Mamani-Matsuda M, Kauss T, Al-Kharrat A, Rambert J, Fawaz F, Thiolat D, Moynet D, Coves S, Malvy D, Mossalayi MD (2006) Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators. Biochem Pharmacol 72:1304–1310PubMedCrossRefGoogle Scholar
  63. 63.
    Deng JS, Chi CS, Huang SS, Shie PH, Lin TH, Huang GJ (2011) Antioxidant, analgesic, and anti-inflammatory activities of the ethanolic extracts of Taxillus liquidambaricola. J Ethnopharmacol 137:1161–1171PubMedCrossRefGoogle Scholar
  64. 64.
    Rovenský J, Stancíková M, Rovenská E, Stvrtina S, Stvrtinová V, Svík K (2009) Treatment of rat adjuvant arthritis with flavonoid (Detralex), methotrexate, and their combination. Ann N Y Acad Sci 1173:798–804PubMedCrossRefGoogle Scholar
  65. 65.
    Hirata A, Murakami Y, Shoji M, Kadoma Y, Fujisawa S (2005) Kinetics of radical-scavenging activity of hesperetin and hesperidin and their inhibitory activity on COX-2 expression. Anticancer Res 25:3367–3374PubMedGoogle Scholar
  66. 66.
    Kawaguchi K, Maruyama H, Kometani T, Kumazawa Y (2006) Suppression of collagen-induced arthritis by oral administration of the citrus flavonoid hesperidin. Planta Med 72:477–479PubMedCrossRefGoogle Scholar
  67. 67.
    Kometani T, Fukuda T, Kakuma T, Kawaguchi K, Tamura W, Kumazawa Y, Nagata K (2008) Effects of α-glucosylhesperidin, a bioactive food material, on collagen-induced arthritis in mice and rheumatoid arthritis in humans. Immunopharm Immunotoxicol 30:117–134CrossRefGoogle Scholar
  68. 68.
    Imada K, Lin N, Liu C, Lu A, Chen W, Yano M, Sato T, Ito A (2008) Nobiletin, a citrus polymethoxy flavonoid, suppresses gene expression and production of aggrecanases-1 and -2 in collagen induced arthritic mice. Biochem Biophys Res Commun 373:181–185PubMedCrossRefGoogle Scholar
  69. 69.
    Murakami A, Song M, Katsumata S, Uehara M, Suzuki K, Ohigashi H (2007) Citrus nobiletin suppresses bone loss in ovariectomized ddY mice and collagen-induced arthritis in DBA/1J mice: possible involvement of receptor activator of NF-kappaB ligand (RANKL)-induced osteoclastogenesis regulation. Biofactors 30:179–192PubMedCrossRefGoogle Scholar
  70. 70.
    Bertelli AA, Ferrara F, Diana G et al (1999) Resveratrol, a natural stilbene in grapes and wine, enhances intraphagocytosis in human promonocytes: a co-factor in antiinflammatory and anticancer chemopreventive activity. Int J Tissue React 21:93–104PubMedGoogle Scholar
  71. 71.
    Manna SK, Mukhopadhyay A, Aggarwal BB (2000) Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappaB, activator protein-1 and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol 164:6509–6519PubMedGoogle Scholar
  72. 72.
    Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NFkappaB activation. Mutat Res 480–481:243–268PubMedGoogle Scholar
  73. 73.
    Estrov Z, Shishodia S, Faderl S, Harris D, Van Q, Kantarjian HM, Talpaz M, Aggarwal BB (2003) Resveratrol blocks interleukin-1beta-induced activation of the nuclear transcription factor NF-kappaB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid leukemia cells. Blood 102:987–995PubMedCrossRefGoogle Scholar
  74. 74.
    Elmali N, Baysal O, Harma A, Esenkaya I, Mizrak B (2007) Effects of resveratrol in inflammatory arthritis. Inflammation 30:1–6PubMedCrossRefGoogle Scholar
  75. 75.
    Shakibaei M, Buhrmann C, Mobasheri A (2011) Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB signaling and inhibit osteoclastogenesis in bone-derived cells. J Biol Chem 286:11492–11505PubMedCrossRefGoogle Scholar
  76. 76.
    Blake DR, Allen RE, Lunec J (1987) Free radicals in biological systems–a review orientated to inflammatory processes. Br Med Bull 43:371–385PubMedGoogle Scholar
  77. 77.
    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818PubMedCrossRefGoogle Scholar
  78. 78.
    Deodhar SD, Sethi R, Srimal RC (1980) Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J Med Res 71:632–634PubMedGoogle Scholar
  79. 79.
    Badria FA, El-Farahaty T, Shabana AA, Hawas SA, El-Batoty MF (2002) Boswellia-curcumin preparation for treating knee osteoarthritis: a clinical evaluation. Altern Complement Ther 8:341–348CrossRefGoogle Scholar
  80. 80.
    Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85PubMedCrossRefGoogle Scholar
  81. 81.
    Thompson KH, Böhmerle K, Polishchuk E, Martins C, Toleikis P, Tse J, Yuen V, McNeill JH, Orvig C (2004) Complementary inhibition of synoviocyte, smooth muscle cell or mouse lymphoma cell proliferation by a vanadyl curcumin complex compared to curcumin alone. J Inorg Biochem 98:2063–2070PubMedCrossRefGoogle Scholar
  82. 82.
    Hehner SP, Hofmann TG, Droge W et al (1999) The antiinflammatory sesquiterpene lactone parthenolide inhibits NF-kB by targeting the IkB kinase complex. J Immunol 163: 5617–6523PubMedGoogle Scholar
  83. 83.
    Hehner SP, Heinrich M, Bork PM et al (1998) Sesquiterpene lactones specifically inhibit activation of NF-kB by preventing the degradation of IkB-a and IkB-b. J Biol Chem 273:1288–1297PubMedCrossRefGoogle Scholar
  84. 84.
    Jäger C, Hrenn A, Zwingmann J, Suter A, Merfort I (2009) Phytomedicines prepared from Arnica flowers inhibit the transcription factors AP-1 and NF-kappaB and modulate the activity of MMP1 and MMP13 in human and bovine chondrocytes. Planta Med 75: 1319–1325PubMedCrossRefGoogle Scholar
  85. 85.
    Widrig R, Suter A, Saller R, Melzer J (2007) Choosing between NSAID and arnica for topical treatment of hand osteoarthritis in a randomised, double-blind study. Rheumatol Int 27:585–591PubMedCrossRefGoogle Scholar
  86. 86.
    Ross SM (2008) Osteoarthritis: a proprietary Arnica gel is found to be as effective as ibuprofen gel in osteoarthritis of the hands. Holist Nurs Pract 22:237–239PubMedGoogle Scholar
  87. 87.
    Lotz M (1994) Experimental models of arthritis: identification of substance P as a therapeutic target and use of capsaicin to manage joint pain and inflammation. Semin Arthritis Rheum 23(suppl):10–17CrossRefGoogle Scholar
  88. 88.
    Zhang WY, Li Wan Po A (1994) The effectiveness of topically applied capsaicin. A meta-analysis. Eur J Clin Pharmacol 46:517–522PubMedCrossRefGoogle Scholar
  89. 89.
    Altman RD, Aven A, Holmburg CE et al (1994) Capsaicin cream 0.025% as monotherapy for osteoarthritis: a double-blind study. Semin Arthritis Rheum 23(Suppl):25–33CrossRefGoogle Scholar
  90. 90.
    Deal C, Schnitzer T, Lipstein E et al (1991) Treatment of arthritis with topical capsaicin: a double blind trial. Clin Ther 13:383–395PubMedGoogle Scholar
  91. 91.
    McCarthy GM, McCarty DJ (1992) Effect of topical capsaicin in the therapy of painful osteoarthritis of the hands. J Rheumatol 19:604–607PubMedGoogle Scholar
  92. 92.
    Schnitzer T, Morton C, Coker S (1994) Topical capsaicin therapy for osteoarthritis pain: achieving a maintenance regimen. Semin Arthritis Rheum 23(suppl):34–40CrossRefGoogle Scholar
  93. 93.
    Richards BL, Whittle SL, Buchbinder R (2012) Neuromodulators for pain management in rheumatoid arthritis. Cochrane Database Syst Rev (1):CD008921Google Scholar
  94. 94.
    Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297:842–857PubMedCrossRefGoogle Scholar
  95. 95.
    Canter PH, Wider B, Ernst E (2007) The antioxidant vitamins A, C, E and selenium in the treatment of arthritis: a systematic review of randomized clinical trials. Rheumatology (Oxford) 46:1223–1233CrossRefGoogle Scholar
  96. 96.
    Wang Y, Hodge AM, Wluka AE, English DR, Giles GG, O’Sullivan R, Forbes A, Cicuttini FM (2007) Effect of antioxidants on knee cartilage and bone in healthy, middle-aged subjects: a cross-sectional study. Arthritis Res Ther 9:R66PubMedCrossRefGoogle Scholar
  97. 97.
    Rosenbaum CC, O’Mathúna DP, Chavez M, Shields K (2010) Antioxidants and antiinflammatory dietary supplements for osteoarthritis and rheumatoid arthritis. Altern Ther Health Med 16:32–40PubMedGoogle Scholar
  98. 98.
    Jantti J, Vapaatalo H, Seppala E, Ruutsalo HM, Isomaki H (1991) Treatment of rheumatoid arthritis with fish oil, selenium, vitamins A and E, and placebo. Scand J Rheumatol 20:225Google Scholar
  99. 99.
    Edmonds SE, Winyard PG, Guo R et al (1997) Putative analgesic activity of repeated oral doses of vitamin E in the treatment of rheumatoid arthritis. Results of a prospective placebo controlled double blind trial. Ann Rheum Dis 56:649–655PubMedCrossRefGoogle Scholar
  100. 100.
    Kolarz G, Scherak O, Shohoumi MEL, Blankenthorn G (1990) Hochdosiertes Vitamin E bei chronischer Polyarthritis. Aktuelle Rheumatologie 15:233–237CrossRefGoogle Scholar
  101. 101.
    Wittenborg A, Petersen G, Lorkowski G, Brabant T (1998) Effectiveness of vitamin E in comparison with diclofenac sodium in treatment of patients with chronic polyarthritis. Z Rheumatol 57:215–221PubMedCrossRefGoogle Scholar
  102. 102.
    Klein KG, Blankenhorn G (1987) Vergleich der klinischeen Wirksamkeit von Vitamin E und Diclofenac-Natrium bei Spondylitis ankylosans. Vitamine, Mineralstoffe, Spurenelemente 2:137–142Google Scholar
  103. 103.
    Machtey I, Ouaknine L (1978) Tocopherol in osteoarthritis: a controlled pilot study. J Am Geriatr Soc 26:328–330PubMedGoogle Scholar
  104. 104.
    Blankenhorn G (1986) Clinical effectiveness of Spondyvit (vitamin E) in activated arthroses. A multicenter placebo-controlled double-blind study. Z Orthop Ihre Grenzgeb 124:340–343PubMedCrossRefGoogle Scholar
  105. 105.
    Wluka AE, Stuckey S, Brand C, Cicuttini FM (2002) Supplementary vitamin E does not affect the loss of cartilage volume in knee osteoarthritis: a 2 year double blind randomized placebo controlled study. J Rheumatol 29:2585–2591PubMedGoogle Scholar
  106. 106.
    Brand C, Snaddon J, Bailey M, Cicuttini F (2001) Vitamin E is ineffective for symptomatic relief of knee osteoarthritis: a six month double blind, randomised, placebo controlled study. Ann Rheum Dis 60:946–949PubMedCrossRefGoogle Scholar
  107. 107.
    Scherak O, Kolarz G, Schodl C, Blankenhorn G (1990) High dosage vitamin E therapy in patients with activated arthrosis. Z Rheumatol 49:369–373PubMedGoogle Scholar
  108. 108.
    Link P, Dreher R (1990) D-alpha-tocopherolacetat versus Diclofenac-Na in der Therapie der aktivierten Arthrose. Der Kassenarzt 22:48–52Google Scholar
  109. 109.
    Mahmud Z, Ali SM (1992) Role of vitamin A and E in spondylosis. Bangladesh Med Res Counc Bull 18:47–59PubMedGoogle Scholar
  110. 110.
    Jaswal S, Mehta HC, Sood AK, Kaur J (2003) Antioxidant status in rheumatoid arthritis and role of antioxidant therapy. Clin Chim Acta 228:123–129CrossRefGoogle Scholar
  111. 111.
    Dallner G, Sindelar PJ (2000) Regulation of ubiquinone metabolism. Free Radic Biol Med 29:285–294PubMedCrossRefGoogle Scholar
  112. 112.
    Villalba JM, Parrado C, Santos-Gonzalez M, Alcain FJ (2010) Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations. Expert Opin Investig Drugs 19:535–554PubMedCrossRefGoogle Scholar
  113. 113.
    Gvozdjakova A, Kucharska J, Tanaka S, Neradova B, Bauerova K (2004) Coenzyme Q10 supplementation differently modulated heart and skeletal muscle mitochondrial function induced by adjuvant arthritis. Mitochondrion 4:20–21Google Scholar
  114. 114.
    Bauerova K, Kucharska J, Mihalova D, Navarova J, Gvozdjakova A, Sumbalova Z (2005) Effect of coenzyme Q(10) supplementation in the rat model of adjuvant arthritis. Biomed Pap 149:501–503CrossRefGoogle Scholar
  115. 115.
    Bauerova K, Paulovicova E, Mihalova D, Drafi F, Strosova M, Mascia C, Biasi F, Rovensky J, Kucharska J, Gvozdjakova A, Ponist S (2010) Combined methotrexate and coenzyme Q10 therapy in adjuvant-induced arthritis evaluated using parameters of inflammation and oxidative stress. Acta Biochim Pol 57:347–354PubMedGoogle Scholar
  116. 116.
    Boldyrev A (2005) Protection of proteins from oxidative stress A new illusion or a novel strategy? Ann N Y Acad Sci 1057:193–205PubMedCrossRefGoogle Scholar
  117. 117.
    Dráfi F, Bauerova K, Valachova K, Poništ S, Mihalova D, Juránek I, Boldyrev A, Hrabárova E, Šoltés L (2010) Carnosine inhibits degradation of hyaluronan induced by free radical processes in vitro and improves the redox imbalance in adjuvant arthritis in vivo. Neuroendocrinol Lett 31:96–100PubMedGoogle Scholar
  118. 118.
    Sales C, Oliviero F, Spinella P (2009) The mediterranean diet model in inflammatory rheumatic diseases. Reumatismo 61:10–14PubMedGoogle Scholar
  119. 119.
    Bebert AA, Kondo CR, Almendra CL, Matsuo T, Dichi I (2005) Supplementation of fish oil and olive oil in patients with rheumatoid arthritis. Nutrition 21:131–136CrossRefGoogle Scholar
  120. 120.
    de la Puerta R, Martínez Domínguez ME, Ruíz-Gutíerrez V, Flavill JA, Hoult JR (2001) Effects of virgin olive oil phenolics on scavenging of reactive nitrogen species and upon nitrergic neurotransmission. Life Sci 69:1213–1222PubMedCrossRefGoogle Scholar
  121. 121.
    Visioli F, Poli A, Gall C (2002) Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev 22:65–75PubMedCrossRefGoogle Scholar
  122. 122.
    Bitler CM, Viale TM, Damaj B, Crea R (2005) Hydrolyzed olive vegetation water in mice has anti-inflammatory activity. J Nutr 135:1475–1479PubMedGoogle Scholar
  123. 123.
    Zhang X, Cao J, Zhong L (2009) Hydroxytyrosol inhibits proinflammatory cytokines, iNOS, and COX-2 expression in human monocytic cells. Naunyn Schmiedebergs Arch Pharmacol 379:581–586PubMedCrossRefGoogle Scholar
  124. 124.
    Beauchamp G, Keast R, Morel D, Liu J, Pika J, Han Q, Lee C, Smith AB III, Breslin P (2005) Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature 437:45–46PubMedCrossRefGoogle Scholar
  125. 125.
    Smith AB III, Han Q, Breslin PAS, Beauchamp GK (2005) Synthesis and assignment of absolute configuration of (-)-Oleocanthal: a potent, naturally occurring non-steroidal anti-inflammatory and anti-oxidant agent derived from extra virgin olive oils. Org Lett 7:5075–5078PubMedCrossRefGoogle Scholar
  126. 126.
    Iacono A, Gómez R, Sperry J, Conde J, Bianco G, Meli R, Gómez-Reino JJ, Smith AB 3rd, Gualillo O (2010) Effect of oleocanthal and its derivatives on inflammatory response induced by lipopolysaccharide in a murine chondrocyte cell line. Arthritis Rheum 62:1675–1682PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of Experimental PharmacologyUniversity of Naples Federico IINaplesItaly

Personalised recommendations