Advertisement

Why Do We Simulate?

  • Barry L. Nelson
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 187)

Abstract

Stochastic simulation is a method for analyzing the performance of systems whose behavior depends on the interaction of random processes, processes that can be fully characterized by probability models. Stochastic simulation is a companion to mathematical and numerical analysis of stochastic models (e.g., Nelson 1995), and is often employed when the desired performance measures are mathematically intractable or there is no numerical approximation whose error can be bounded. Computers make stochastic simulation practical, but the method can be described independently of any computer implementation, which is what we do here.

References

  1. Albright, S. C. (2007). VBA for modelers: Developing decision support systems using Microsoft Excel (2nd ed.). Belmont: Thompson Higher Eduction.Google Scholar
  2. Alexopoulos, C. (2006). Statistical estimation in computer simulation. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation. New York: North-Holland.Google Scholar
  3. Andradóttir, S. (1999). Accelerating the convergence of random search methods for discrete stochastic optimization. ACM Transactions on Modeling and Computer Simulation, 9, 349–380.CrossRefGoogle Scholar
  4. Andradóttir, S. (2006a). An overview of simulation optimization via random search. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation. New York: North-Holland.Google Scholar
  5. Andradóttir, S. (2006b). Simulation optimization with countably infinite feasible regions: Efficiency and convergence. ACM Transactions on Modeling and Computer Simulation, 16, 357–374.CrossRefGoogle Scholar
  6. Andradóttir, S., & Kim, S. (2010). Fully sequential procedures for comparing constrained systems via simulation. Naval Research Logistics, 57, 403–421.CrossRefGoogle Scholar
  7. Ankenman, B. E., & Nelson, B. L. (2012, in press). A quick assessment of input uncertainty. Proceedings of the 2012 Winter Simulation Conference, Berlin.Google Scholar
  8. Asmussen, S. & Glynn, P. W., (2007). Stochastic simulation: Algorithms and analysis. New York: Springer.Google Scholar
  9. Batur, D., & Kim, S. (2010). Finding feasible systems in the presence of constraints on multiple performance measures. ACM Transactions on Modeling and Computer Simulation, 20, 13:1–13:26.Google Scholar
  10. Bechhofer, R. E., Santner, T. J., & Goldsman, D. (1995). Design and analysis of experiments for statistical selection, screening and multiple comparisons. New York: Wiley.Google Scholar
  11. Biller, B., & Corlu, C. G. (2012). Copula-based multivariate input modeling. Surveys in Operations Research and Management Science, 17, 69–84.CrossRefGoogle Scholar
  12. Biller, B., & Ghosh, S. (2006). Multivariate input processes. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation. New York: North-Holland.Google Scholar
  13. Biller, B., & Nelson, B. L. (2003). Modeling and generating multivariate time-series input processes using a vector autoregressive technique. ACM Transactions on Modeling and Computer Simulation, 13, 211–237.CrossRefGoogle Scholar
  14. Biller, B., & Nelson, B. L. (2005). Fitting time series input processes for simulation. Operations Research, 53, 549–559.CrossRefGoogle Scholar
  15. Billingsley, P. (1995). Probability and measure (3rd ed.). New York: Wiley.Google Scholar
  16. Boesel, J., Nelson, B. L., & Kim, S. (2003). Using ranking and selection to “clean up” after simulation optimization. Operations Research, 51, 814–825.CrossRefGoogle Scholar
  17. Bratley, P., Fox, B. L., & Schrage, L. E. (1987). A guide to simulation (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  18. Burt, J. M., & Garman, M. B. (1971). Conditional Monte Carlo: A simulation technique for stochastic network analysis. Management Science, 19, 207–217.CrossRefGoogle Scholar
  19. Cario, M. C. & Nelson, B. L. (1998). Numerical methods for fitting and simulating autoregressive-to-anything processes. INFORMS Journal on Computing, 10, 72–81.CrossRefGoogle Scholar
  20. Cash, C., Nelson, B. L., Long, J., Dippold, D., & Pollard, W. (1992). Evaluation of tests for initial-condition bias. Proceedings of the 1992 Winter Simulation Conference (pp. 577–585). Piscataway, New Jersey: IEEE.Google Scholar
  21. Chatfield, C. (2004). The analysis of time series: An introduction (6th ed.). Boca Raton: Chapman & Hall/CRC.Google Scholar
  22. Chen, H. (2001). Initialization for NORTA: Generation of random vectors with specified marginals and correlations. INFORMS Journal on Computing, 13, 312–331.CrossRefGoogle Scholar
  23. Chow, Y. S., & Robbins, H. (1965). On the asymptotic theory of fixed-width sequential confidence intervals for the mean. The Annals of Mathematical Statistics, 36, 457–462.CrossRefGoogle Scholar
  24. Devroye, L. (1986). Non-uniform random variate generation. New York: Springer.Google Scholar
  25. Devroye, L. (2006). Nonuniform random variate generation. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation. New York: North-Holland.Google Scholar
  26. Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. Boca Raton: Chapman & Hall/CRC.Google Scholar
  27. Elizandro, D., & Taha, H. (2008). Simulation of industrial systems: Discrete event simulation using Excel/VBA. New York: Auerbach Publications.Google Scholar
  28. Frazier, P. I. (2010). Decision-theoretic foundations of simulation optimization. In J. J. Cochran (Ed.), Wiley encyclopedia of operations research and management sciences. New York: Wiley.Google Scholar
  29. Fu, M. C. (2006). Gradient estimation. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation. New York: North-Holland.Google Scholar
  30. Gerhardt, I., & Nelson, B. L. (2009). Transforming renewal processes for simulation of nonstationary arrival processes. INFORMS Journal on Computing, 21, 630–640.CrossRefGoogle Scholar
  31. Ghosh, S., & Henderson, S. G. (2002). Chessboard distributions and random vectors with specified marginals and covariance matrix. Operations Research, 50, 820–834.CrossRefGoogle Scholar
  32. Glasserman, P. (2004). Monte Carlo methods in financial engineering. New York: Springer.Google Scholar
  33. Glasserman, P., & Yao, D. D. (1992). Some guidelines and guarantees for common random numbers. Management Science, 38, 884–908.CrossRefGoogle Scholar
  34. Glynn, P. W. (2006). Simulation algorithms for regenerative processes. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation. New York: North-Holland.Google Scholar
  35. Glynn, P. W., & Whitt, W. (1992). The asymptotic validity of sequential stopping rules for stochastic simulations. The Annals of Applied Probability, 2, 180–198.CrossRefGoogle Scholar
  36. Goldsman, D., Kim, S., Marshall, S. W., & Nelson, B. L. (2002). Ranking and selection for steady-state simulation: Procedures and perspectives. INFORMS Journal on Computing, 14, 2–19.CrossRefGoogle Scholar
  37. Goldsman, D., & Nelson, B. L. (1998). Comparing systems via simulation. In J. Banks (Ed.), Handbook of simulation (pp. 273–306). New York: Wiley.CrossRefGoogle Scholar
  38. Goldsman, D., & Nelson, B. L. (2006). Correlation-based methods for output analysis. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation. New York: North-Holland.Google Scholar
  39. Gross, D., Shortle, J. F., Thompson, J. M., & Harris, C. M. (2008). Fundamentals of queueing theory (4th ed.). New York: Wiley.Google Scholar
  40. Haas, P. J. (2002). Stochastic petri nets: Modeling, stability, simulation. New York: Springer.Google Scholar
  41. Henderson, S. G. (2003). Estimation of nonhomogeneous Poisson processes from aggregated data. Operations Research Letters, 31, 375–382.CrossRefGoogle Scholar
  42. Henderson, S. G. (2006). Mathematics for simulation. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation. New York: North-Holland.Google Scholar
  43. Henderson, S. G., & Nelson, B. L. (2006). Stochastic computer simulation. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation. New York: North-Holland.Google Scholar
  44. Hill, R. R., & Reilly, C. H. (2000). The effects of coefficient correlation structure in two-dimensional knapsack problems on solution procedure performance. Management Science, 46, 302–317.CrossRefGoogle Scholar
  45. Hong, L. J., & Nelson, B. L. (2007a). Selecting the best system when systems are revealed sequentially. IIE Transactions, 39, 723–734.CrossRefGoogle Scholar
  46. Hong, L. J., & Nelson, B. L. (2007b). A framework for locally convergent random-search algorithms for discrete optimization via simulation. ACM Transactions on Modeling and Computer Simulation, 17, 19/1-19/22.Google Scholar
  47. Hörmann, W. (1993). The transformed rejection method for generating Poisson random variables. Insurance: Mathematics and Economics, 12, 39–45.CrossRefGoogle Scholar
  48. Iravani, S. M. R., & Krishnamurthy, V. (2007). Workforce agility in repair and maintenance environments. Manufacturing and Service Operations Management, 9, 168–184.CrossRefGoogle Scholar
  49. Iravani, S. M., Van Oyen, M. P., & Sims, K. T. (2005). Structural flexibility: A new perspective on the design of manufacturing and service operations. Management Science, 51, 151–166.CrossRefGoogle Scholar
  50. Johnson, M. E. (1987). Multivariate statistical simulation. New York: Wiley.Google Scholar
  51. Johnson, N. L., Kemp, A. W., & Kotz, S. (2005). Univariate discrete distributions (3rd ed.). New York: Wiley.CrossRefGoogle Scholar
  52. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate distributions (2nd ed., Vol. 1). New York: Wiley.Google Scholar
  53. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions (2nd ed., Vol. 2). New York: Wiley.Google Scholar
  54. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1997). Discrete multivariate distributions. New York: Wiley.Google Scholar
  55. Kachitvichyanukul, V., & Schmeiser, B. (1990). Noninverse correlation induction: Guidelines for algorithm development. Journal of Computational and Applied Mathematics, 31, 173–180.CrossRefGoogle Scholar
  56. Karian, A. Z., & Dudewicz, E. J. (2000). Fitting statistical distributions: The generalized lambda distribution and generalized bootstrap methods. New York: CRC.CrossRefGoogle Scholar
  57. Karlin, S., & Taylor, H. M. (1975). A first course in stochastic processes (2nd ed.). New York: Academic.Google Scholar
  58. Kelton, W. D. (2006). Implementing representations of uncertainty. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation. New York: North-Holland.Google Scholar
  59. Kelton, W. D., Smith, J. S., & Sturrock, D. T. (2011). Simio and simulation: Modeling, analysis and applications (2nd ed.). New York: McGraw-Hill.Google Scholar
  60. Kim, S., & Nelson, B. L. (2001). A fully sequential procedure for indifference-zone selection in simulation. ACM Transactions on Modeling and Computer Simulation, 11, 251–273.CrossRefGoogle Scholar
  61. Kim, S., & Nelson, B. L. (2006). Selecting the best system. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation. New York: North-Holland.Google Scholar
  62. Knuth, D. E. (1998). The art of computer programming, Vol. 2: Seminumerical algorithms (3rd ed.). Boston: Addison-Wesley.Google Scholar
  63. Kotz, S., Balakrishnan, N., & Johnson, N. L. (2000). Continuous multivariate distributions, Vol. 1, models and applications (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  64. Kulkarni, V. G. (1995). Modeling and analysis of stochastic systems. London: Chapman & Hall.Google Scholar
  65. Lakhany, A., & Mausser, H. (2000). Estimating the parameters of the generalized lambda distribution. ALGO Research Quarterly, 3, 47–58.Google Scholar
  66. Law, A. M. (2007). Simulation modeling and analysis (4th ed.). New York: McGraw-Hill.Google Scholar
  67. Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis (3rd ed.). New York: McGraw-Hill.Google Scholar
  68. L’Ecuyer, P. (1988). Efficient and portable combined random number generators. Communications of the ACM, 31, 742–749.CrossRefGoogle Scholar
  69. L’Ecuyer, P. (1990). A unified view of IPA, SF, and LR gradient estimation techniques. Management Science, 36, 1364–1383.CrossRefGoogle Scholar
  70. L’Ecuyer, P. (1999). Good parameters and implementations for combined multiple recursive random number generators. Operations Research, 47, 159–164.CrossRefGoogle Scholar
  71. L’Ecuyer, P. (2006). Uniform random number generation. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation. New York: North-Holland.Google Scholar
  72. L’Ecuyer, P., & Simard, R. (2001). On the performance of birthday spacings tests for certain families of random number generators. Mathematics and Computers in Simulation, 55, 131–137.CrossRefGoogle Scholar
  73. L’Ecuyer, P., Simard, R., Chen, E. J., & Kelton, W. D. (2002). An object-oriented random-number package with many long streams and substreams. Operations Research, 50, 1073-1075.CrossRefGoogle Scholar
  74. Lee, S., Wilson, J. R., & Crawford, M. M. (1991). Modeling and simulation of a nonhomogeneous Poisson process having cyclic behavior. Communications in Statistics-Simulation and Computation, 20, 777–809.CrossRefGoogle Scholar
  75. Leemis, L. M. (1991). Nonparameteric estimation of the cumulative intensity function for a nonhomogeneous Poisson process. Management Science, 37, 886–900.CrossRefGoogle Scholar
  76. Leemis, L. M. (2006). Arrival processes, random lifetimes and random objects. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation. New York: North-Holland.Google Scholar
  77. Leemis, L. M., & McQueston, J. T. (2008). Univariate distribution relationships. The American Statistician, 62, 45–53.CrossRefGoogle Scholar
  78. Lehmann, E. L. (2010). Elements of large-sample theory. New York: Springer.Google Scholar
  79. Lewis, T. A. (1981). Confidence intervals for a binomial parameter after observing no successes. The American Statistician, 35, 154.Google Scholar
  80. Marse, K., & Roberts, S. D. (1983). Implementing a portable FORTRAN uniform (0,1) generator. Simulation, 41, 135–139.CrossRefGoogle Scholar
  81. Montgomery, D. C. (2009). Design and analysis of experiments (7th ed.). New York: Wiley.Google Scholar
  82. Nádas, A. (1969). An extension of a theorem of Chow and Robbins on sequential confidence intervals for the mean. The Annals of Mathematical Statistics, 40, 667–671.CrossRefGoogle Scholar
  83. Nelson, B. L. (1990). Control-variate remedies. Operations Research, 38, 974–992.CrossRefGoogle Scholar
  84. Nelson, B. L. (1995). Stochastic modeling: Analysis and simulation. Mineola: Dover Publications, Inc.Google Scholar
  85. Nelson, B. L. (2008). The MORE plot: Displaying measures of risk and error from simulation output. Proceedings of the 2008 Winter Simulation Conference (pp. 413–416). Piscataway, New Jersey: IEEE.Google Scholar
  86. Nelson, B. L., & Taaffe, M. R. (2004). The Ph t ∕ Ph t ∕  queueing system: Part I: The single node. INFORMS Journal on Computing, 16, 266–274.CrossRefGoogle Scholar
  87. Nelson, B. L., Swann, J., Goldsman, D., & Song, W. (2001). Simple procedures for selecting the best simulated system when the number of alternatives is large. Operations Research, 49, 950–963.CrossRefGoogle Scholar
  88. Pasupathy, R., & Schmeiser, B. (2010). The initial transient in steady-state point estimation: Contexts, a bibliography, the MSE criterion, and the MSER statistic. Proceedings of the 2010 Winter Simulation Conference (pp. 184–197). Piscataway, New Jersey: IEEE.Google Scholar
  89. Sargent, R. G. (2011). Verification and validation of simulation models. Proceedings of the 2011 Winter Simulation Conference (pp. 183–198). Piscataway, New Jersey: IEEE.Google Scholar
  90. Schmeiser, B. (1982). Batch size effects in the analysis of simulation output. Operations Research, 30, 556–568.CrossRefGoogle Scholar
  91. Schruben, L. (1982). Detecting initialization bias in simulation output. Operations Research, 30, 569–590.CrossRefGoogle Scholar
  92. Schruben, L., Singh, H., & Tierney, L. (1983). Optimal tests for initialization bias in simulation output. Operations Research, 31, 1167–1178.CrossRefGoogle Scholar
  93. Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2009). Lectures on stochastic programming: Modeling and theory. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
  94. Shechter, S. M., Schaefer, A. J., Braithwaite, R. S., & Roberts, M. S. (2006). Increasing the efficiency of Monte Carlo cohort simulations with variance reduction techniques. Medical Decision Making, 26, 550–553.CrossRefGoogle Scholar
  95. Snell, M., & Schruben, L. (1985). Weighting simulation data to reduce initialization effects. IIE Transactions, 17, 354–363.CrossRefGoogle Scholar
  96. Steiger, N. M., & Wilson, J. R. (2001). Convergence properties of the batch means method for simulation output analysis. INFORMS Journal on Computing, 13, 277–293.CrossRefGoogle Scholar
  97. Stigler, S. M. (1986). The history of statistics: The measurement of uncertainty before 1900. Cambridge, MA: Belknap.Google Scholar
  98. Swain, J. J., Venkatraman, S., & Wilson, J. R. (1988). Least-squares estimation of distribution functions in Johnson’s translation system. Journal of Statistical Computation and Simulation, 29, 271–297.CrossRefGoogle Scholar
  99. Tafazzoli, A., & Wilson, J. R. (2011). Skart: A skewness-and-autoregression-adjusted batch-means procedure for simulation analysis. IIE Transactions, 43, 110-128.CrossRefGoogle Scholar
  100. Walkenbach, J. (2010). Excel 2010 power programming with VBA. New York: Wiley.CrossRefGoogle Scholar
  101. White, K. P. (1997). An effective truncation heuristic for bias reduction in simulation output. Simulation, 69, 323–334.CrossRefGoogle Scholar
  102. Whitt, W. (1981). Approximating a point process by a renewal process: The view through a queue, an indirect approach. Management Science, 27, 619–636.CrossRefGoogle Scholar
  103. Whitt, W. (1989). Planning queueing simulations. Management Science, 35, 1341–1366.CrossRefGoogle Scholar
  104. Whitt, W. (2006). Analysis for design. In S. G. Henderson & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation. New York: North-Holland.Google Scholar
  105. Whitt, W. (2007). What you should know about queueing models to set staffing requirements in service systems. Naval Research Logistics, 54, 476–484.CrossRefGoogle Scholar
  106. Xu, J., Hong, L. J., & Nelson, B. L. (2010). Industrial strength COMPASS: A comprehensive algorithm and software for optimization via simulation. ACM Transactions on Modeling and Computer Simulation, 20, 1–29.CrossRefGoogle Scholar
  107. Xu, J., Nelson, B. L., & Hong, L. J. (2012, in press). An adaptive hyperbox algorithm for high-dimensional discrete optimization via simulation problems. INFORMS Journal on Computing.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Barry L. Nelson
    • 1
  1. 1.Department of Industrial Engineering and Management SciencesNorthwestern UniversityEvanstonUSA

Personalised recommendations