Skip to main content

Dynamic Kinetic Modeling of Mitochondrial Energy Metabolism

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Computer simulations can be used to predict the dynamic behaviour of metabolic pathways and to provide evidence in support of clinical treatments for metabolic disorders. Here, we performed dynamic kinetic simulations of mitochondrial energy metabolism using the E-Cell Simulation Environment. The simulation model was developed as a reconstruction of publicly available kinetic studies on the enzymes of the respiratory chain, the TCA cycle, fatty acid β-oxidation and the inner-membrane metabolite transporters.1 Rate equations for the 58 enzymatic reactions and 286 of the 471 kinetic parameters were taken from 36 and 45 articles, respectively. Approximately 80% of the articles that contributed to the kinetic properties of the mitochondrial model have “kinetics” and the enzyme name as their MeSH terms. The published data were mainly obtained from various tissues in five mammals (human, bovine, pig, rabbit and rat). The other kinetic parameters were estimated numerically using a genetic algorithm module of E-Cell to satisfy the Lineweaver-Burk plot of each enzyme. The simulations indicated that increasing coenzyme Q and succinate promotes the total activity of the respiratory chain without affecting other pathways. This result agrees qualitatively with a clinical case report of treatment with coenzyme Q and succinate.2 In another case, oxoglutarate supplementation also activated the respiratory chain, but mainly through activation by Complex I. This contrasts with the electron donation through the succinate dehydrogenase complex in the case of coenzyme Q + succinate. These results support the utility of the mitochondrial metabolism model in elucidating action mechanism of clinical treatments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Yugi K, Tomita M. A general computational model of mitochondrial metabolism. Bioinformatics 2004; 20:1795–1796.

    Article  PubMed  CAS  Google Scholar 

  2. Shoffner JM et al. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci USA 1989; 86:7952–7956.

    Article  PubMed  CAS  Google Scholar 

  3. Chance B, Garfinkel D, Higgins J et al. Metabolic control mechanisms V: A solution for the equations representing interaction between glycolysis and respiration in ascites tumor cells. J Biol Chem 1960; 235:2426–2439.

    PubMed  CAS  Google Scholar 

  4. Joshi A, Palsson BO. Metabolic dynamics in the human red cell: Part I. A comprehensive kinetic model. J Theor Biol 1989; 141:515–528.

    Article  PubMed  CAS  Google Scholar 

  5. Korzeniewski B, Froncisz W. A dynamic model of mitochondrial respiration. Stud Biophys 1989; 132:173–187.

    CAS  Google Scholar 

  6. Wright BE, Butler MH, Albe KR. Systems analysis of the tricarboxylic acid cycle in dictyostelium discoideum. I. The basis for model construction. J Biol Chem 1992; 267:3101–3105.

    PubMed  CAS  Google Scholar 

  7. Takahashi K et al. Computational challenges in cell simulation. IEEE Intelligent Systems 2002; 17:64–71.

    Google Scholar 

  8. Przyrembel H. Therapy of mitochondrial disorders. J Inherit Metab Dis 1987; 10:129–146.

    Article  PubMed  Google Scholar 

  9. Luft R. The development of mitochondrial medicine. Proc Natl Acad Sci USA 1994; 91:8731–8738.

    Article  PubMed  CAS  Google Scholar 

  10. Yugi K, Nakayama Y, Kinoshita A et al. Hybrid dynamic/static method for large-scale simulation of metabolism. Theoretical Biology and Medical Modelling 2005; 2:42.

    Article  PubMed  Google Scholar 

  11. Robinson BH et al. The use of skin fibroblast cultures in the detection of respiratory chain defects in patients with lacticacidemia. Pediatr Res 1990; 28:549–555.

    Article  PubMed  CAS  Google Scholar 

  12. Soga T et al. Pressure-assisted capillary electrophoresis electrospray ionization mass spectrometry for analysis of multivalent anions. Anal Chem 2002; 74:6224–6229.

    Article  PubMed  CAS  Google Scholar 

  13. Barden RE, Fung CH, Utter MF et al. Pyruvate carboxylase from chicken liver. J Biol Chem 1972; 247:1323–1333.

    PubMed  CAS  Google Scholar 

  14. Beckmann JD, Frerman FE. Reaction of electron transfer flavoprotein with electron-transfer flavoprotein-ubiquinone oxidoreductase. Biochemistry 1985; 24:3922–3925.

    Article  PubMed  CAS  Google Scholar 

  15. Crow KE, Braggins TJ, Hardman MJ. Human liver cytosolic malate dehydrogenase: purification, kinetic properties and role in ethanol metabolism. Arch Biochem Biophys 1983; 225:621–629.

    Article  PubMed  CAS  Google Scholar 

  16. Davisson VJ, Schulz AR. The purification and steady-state kinetic behaviour of rabbit heart mitochondrial NAD(P)+ malic enzyme. Biochem J 1985; 225:335–342.

    PubMed  CAS  Google Scholar 

  17. De Rosa G, Burk TL, Swick RW. Isolation and characterization of mitochondrial alanine aminotransferase from porcine tissue. Biochim Biophys Acta 1979; 567:116–124.

    Article  PubMed  Google Scholar 

  18. Dierks T, Kramer R. Asymmetric orientation of the reconstituted aspartate/glutamete carrier from mitochondria. Biochim Biophys Acta 1988; 937:112–126.

    Article  PubMed  CAS  Google Scholar 

  19. Fato R et al. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles. Biochemistry 1996; 35:2705–2716.

    Article  PubMed  CAS  Google Scholar 

  20. Grivennikova VG, Gavrikova EV, Timoshin AA et al. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. new assay system and overall properties of the reaction. Biochim Biophys Acta 1993; 1140:282–292.

    Article  PubMed  CAS  Google Scholar 

  21. Guarriero-Bobyleva V, Masini A, Volpi-Becchi MA et al. Kinetic studies of cytoplasmic and mitochondrial aconitate hydratases from rat liver. Ital J Biochem 1978; 27:287–299.

    PubMed  CAS  Google Scholar 

  22. Hamada M et al. A kinetic study of the alpha-keto acid dehydrogenase complexes from pig heart mitochondria. J Biochem (Tokyo) 1975; 77:1047–1056.

    CAS  Google Scholar 

  23. Indiveri C, Dierks T, Kramer R et al. Reaction mechanism of the reconstituted oxoglutarate carrier from bovine heart mitochondria. Eur J Biochem 1991; 198:339–347.

    Article  PubMed  CAS  Google Scholar 

  24. Indiveri C, Tonazzi A, Prezioso G et al. Kinetic characterization of the reconstituted carnitine carrier from rat liver mitochondria. Biochim Biophys Acta 1991; 1065:231–238.

    Article  PubMed  CAS  Google Scholar 

  25. Indiveri C, Tonazzi A, Palmieri F. The reconstituted carnitine carrier from rat liver mitochondria: evidence for a transport mechanism different from that of the other mitochondrial translocators. Biochim Biophys Acta 1994; 1189:65–73.

    Article  PubMed  CAS  Google Scholar 

  26. Kholodenko BN. Kinetic models of coupling between H+and Na(+)-translocation and ATP synthesis/ hydrolysis by FoF1-ATPases: can a cell utilize both delta mu H+ and delta mu Na+ for ATP synthesis under in vivo conditions using the same enzyme? J Bioenerg Biomembr 1993; 25:285–295.

    Article  PubMed  CAS  Google Scholar 

  27. Kramer R, Klingenberg M. Electrophoretic control of reconstituted adenine nucleotide translocation. Biochemistry 1982; 21:1082–1089.

    Article  PubMed  CAS  Google Scholar 

  28. Kubota T, Yoshikawa S, Matsubara H. Kinetic mechanism of beef heart ubiquinol: cytochrome c oxidoreducase. J Biochem (Tokyo) 1992; 111:91–98.

    CAS  Google Scholar 

  29. Malmstrom BG, Andreasson LE. The steady-state rate equation for cytochrome c oxidase based on a minimal kinetic scheme. J Inorg Biochem 1985; 23:233–242.

    Article  PubMed  CAS  Google Scholar 

  30. Mann WR, Yan B, Dragland CJ et al. Kinetic, circular dichroism and fluorescence studies on heterologously expressed carnitine palmitoyltransferase II. J Enzym Inhib 1995; 9:303–308.

    Article  PubMed  CAS  Google Scholar 

  31. Matsuoka Y, Srere PA. Kinetic studies of citrate synthase from rat kidney and rat brain. J Biol Chem 1973; 248:8022–8030.

    PubMed  CAS  Google Scholar 

  32. McKean MC, Frerman FE, Mielke DM. General acyl-CoA dehydrogenase frome pig liver. J Biol Chem 1979; 254:2730–2735.

    PubMed  CAS  Google Scholar 

  33. Miyazawa S, Furuta S, Osumi T et al. Properties of peroxisomal 3-ketoacyl-CoA thiolase from rat liver. J Biochem (Tokyo) 1981; 90:511–519.

    CAS  Google Scholar 

  34. Mukherjee A, Srere PA. Purification of and mechanism studies on citrate synthase. J Biol Chem 1976; 251:1476–1480.

    PubMed  CAS  Google Scholar 

  35. Plaut GWE, Schramm VL, Aogaichi T. Action of magnesium ion on diphosphopyridine nucleotide-linked isocitrate dehydrogenase from bovine heart. J Biol Chem 1974; 249:848–1856.

    Google Scholar 

  36. Ramsay RR, Derrick JP, Friend AS et al. Purification and properties of the soluble carnitine palmitoyltransferase from bovine liver mitochondria. Biochem J 1987; 244:271–278.

    PubMed  CAS  Google Scholar 

  37. Sluse FE et al. Kinetic study of the aspartate/glutamate carrier in intact rat heart mitochondria and comparison with a reconstituted system. Biochim Biophys Acta 1991; 1058:329–338.

    Article  PubMed  CAS  Google Scholar 

  38. Stappen R, Kramer R. Kinetic mechanism of phosphate/phosphate and phosphate/OH-antiports catalyzed by reconstituted phosphate carrier from beef heart mitochondria. J Biol Chem 1994; 269:11240–11246.

    PubMed  CAS  Google Scholar 

  39. Yang SY, Schulz H. Kinetics of coupled enzyme reactions. Biochemistry 1987; 26:5579–5584.

    Article  PubMed  CAS  Google Scholar 

  40. Velick SF, Vavra J. A kinetic and equilibrium analysis of the glutamic oxaloacetate transaminase mechanism. J Biol Chem 1962; 237:2109–2122.

    PubMed  CAS  Google Scholar 

  41. Henson CP, Cleland WW. Kinetic studies of glutamic oxaloacetic transaminase isozymes. Biochemistry 1964; 3:338–345.

    Article  PubMed  CAS  Google Scholar 

  42. Bisaccia F, De Palma A, Dierks T et al. Reaction mechanism of the reconstituted tricarboxylate carrier from rat liver mitochondria. Biochim Biophys Acta 1993; 1142:139–145.

    Article  PubMed  CAS  Google Scholar 

  43. Matsuno-Yagi A, Hatefi Y. Studies on the mechanism of oxidative phosphorylation: catalytic site cooperativity in ATP synthesis. J Biol Chem 1985; 260:14424–14427.

    CAS  Google Scholar 

  44. Woeltje KF, Kuwajima M, Foster DW et al. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. J Biol Chem 1987; 262:9822–9827.

    PubMed  CAS  Google Scholar 

  45. Shepherd D, Garland PB. The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J 1969; 114:597–610.

    PubMed  CAS  Google Scholar 

  46. Indiveri C, Prezioso G, Dierks T et al. Kinetic characterization of the reconstituted dicarboxylate carrier from mitochondria: a four-binding-site sequential transport system. Biochim Biophys Acta 1993; 1143:310–318.

    Article  PubMed  CAS  Google Scholar 

  47. Hill RL, Teipel JW. The Enzymes volume V. in: Boyer PD, ed. New York and London: Academic Press, 1970; 539–571.

    Google Scholar 

  48. Ehrlich RS, Hayman S, Ramachandran N et al. F. Re-evaluation of molecular weight of pig heart NAD-specific isocitrate dehydrogenase. J Biol Chem 1981; 256:10560–10564.

    PubMed  CAS  Google Scholar 

  49. Londesborough JC, Dalziel K. Pyridine nucleotide dependent dehydrogenases. In: Sund H, ed. New York: Springer-Verlag 1970; 315–324.

    Chapter  Google Scholar 

  50. Colomb MG, Cheruy A, Vignais PV. Nucleoside diphosphatekinase from beef heart mitochondria: purification and properties. Biochemistry 1969; 8:1926–1939.

    Article  PubMed  CAS  Google Scholar 

  51. Garces E, Cleland WW. Kinetic studies of yeast nucleoside diphosphate kinase. Biochemistry 1969; 8:633–640.

    Article  PubMed  CAS  Google Scholar 

  52. Cleland WW. Derivation of rate equations of multisite ping-pong mechanisms with ping-pong reactions at one or more sites. J Biol Chem 1973; 248:8353–8355.

    PubMed  CAS  Google Scholar 

  53. Kiselevsky YV, Ostrovtsova SA, Strumilo SA. Kinetic characterization of the pyruvate and oxoglutarate dehydrogenase complexes from human heart. Acta Biochim Pol 1990; 37:135–139.

    PubMed  CAS  Google Scholar 

  54. Heckert LL, Butler MH, Reimers JM et al. Purification and characterization of the 2-oxoglutarate dehydrogenase complex from Dictyostelium discoideum. J Gen Microbiol 1989; 135:155–161.

    PubMed  CAS  Google Scholar 

  55. Nalecz KA. Molecular biology of mitochondrial transport systems. In: Forte M, Colombini M, eds. Springer-Verlag Berlin Heidelberg 1994; 67–79.

    Chapter  Google Scholar 

  56. Capuano F, Di Paola M, Azzi A et al. The monocarboxylate carrier from rat liver mitochondria: purification and kinetic characterization in a reconstituted system. FEBS Lett 1990; 261:39–42.

    Article  PubMed  CAS  Google Scholar 

  57. Cha S, Parks Jr, RE. Succinic thiokinase II. kinetic studies: Initial velocity, product inhibition and effect of arsenate. J Biol Chem 1964; 239:1968–1977.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yugi, K. (2013). Dynamic Kinetic Modeling of Mitochondrial Energy Metabolism. In: E-Cell System. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6157-9_8

Download citation

Publish with us

Policies and ethics