Skip to main content

Electrophysiological Simulation of Developmental Changes in Action Potentials of Cardiomyocytes

  • Chapter
E-Cell System

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

During cardiomyocyte development, early embryonic ventricular cells show spontaneous activity that disappears at a later stage. Dramatic changes in action potential are mediated by developmental changes in individual ionic currents. Hence, reconstruction of the individual ionic currents into an integrated mathematical model would lead to a better understanding of cardiomyocyte development. To simulate the action potential of the rodent ventricular cell, anecdotally reported developmental changes in individual ionic systems were integrated into two different cardiac electrophysiological models: the Kyoto model and the Luo-Rudy model. Quantitative changes in the ionic currents, pumps, exchangers and sarcoplasmic reticulum Ca2+ kinetics were represented as relative activities, which were multiplied by conductance or conversion factors for individual ionic systems. The integrated models can simulate three representative stages in rodent development: early embryonic, late embryonic and neonatal stages. The simulated action potential of the early embryonic ventricular cell model exhibited spontaneous activity that ceased in the simulated action potential of the late embryonic and neonatal ventricular cell models. The simulations with our models reproduced action potentials consistent with the reported characteristics of the cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yasui K, Liu W, Opthof T et al. I(f ) current and spontaneous activity in mouse embryonic ventricular myocytes. Circ Res 2001; 88(5):536–542.

    Article  PubMed  CAS  Google Scholar 

  2. Nagashima M, Tohse N, Kimura K et al. Alternation of inwardly rectifying background K+ channel during development of rat fetal cardiomyocytes. J Mol Cell Cardiol 2001; 33(3):533–543.

    Article  PubMed  CAS  Google Scholar 

  3. Kojima M, Sada H, Sperelakis N. Developmental changes in beta-adrenergic and cholinergic interactions on calcium-dependent slow action potentials in rat ventricular muscles. Br J Pharmacol 1990; 99(2):327–333.

    Article  PubMed  CAS  Google Scholar 

  4. Satoh H, Sada H, Tohse N et al. Developmental aspects of electrophysiology in cardiac muscle. Nippon Yakurigaku Zasshi 1996; 107(5):213–223.

    Article  PubMed  CAS  Google Scholar 

  5. Wang L, Feng ZP, Kondo CS et al. Developmental changes in the delayed rectifier K+ channels in mouse heart. Circ Res 1996; 79(1):79–85.

    Article  PubMed  CAS  Google Scholar 

  6. Agata N, Tanaka H, Shigenobu K. Developmental changes in action potential properties of the guinea-pig myocardium. Acta Physiol Scand 1993; 149(3):331–337.

    Article  PubMed  CAS  Google Scholar 

  7. Itoh H, Naito Y, Tomita M. Simulation of developmental changes in action potentials with ventricular cell models. Systems and Synthetic Biology 2007; 1(1):11–23.

    Article  PubMed  Google Scholar 

  8. Matsuoka S, Sarai N, Kuratomi S et al. Role of individual ionic current systems in ventricular cells hypothesized by a model study. Jpn J Physiol 2003; 53(2):105–123.

    Article  PubMed  CAS  Google Scholar 

  9. Faber GM, Rudy Y. Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys J 2000; 78(5):2392–2404.

    Article  Google Scholar 

  10. Linz KW, Meyer R. Profile and kinetics of L-type calcium current during the cardiac ventricular action potential compared in guinea-pigs, rats and rabbits. Pflugers Arch 2000; 439(5):588–599.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang ZJ, Jurkiewicz NK, Folander K et al. K+ currents expressed from the guinea pig cardiac IsK protein are enhanced by activators of protein kinase C. Proc Natl Acad Sci USA 1994; 91(5):1766–1770.

    Article  PubMed  CAS  Google Scholar 

  12. Kato Y, Masumiya H, Agata N et al. Developmental changes in action potential and membrane currents in fetal, neonatal and adult guinea-pig ventricular myocytes. J Mol Cell Cardiol 1996; 28(7):1515–1522.

    Article  PubMed  CAS  Google Scholar 

  13. Ferron L, Capuano V, Deroubaix E et al. Functional and molecular characterization of a T-type Ca(2+) channel during fetal and postnatal rat heart development. J Mol Cell Cardiol 2002; 34(5):533–546.

    Article  PubMed  CAS  Google Scholar 

  14. Masuda H, Sperelakis N. Inwardly rectifying potassium current in rat fetal and neonatal ventricular cardiomyocytes. Am J Physiol 1993; 265(4 Pt 2):H1107–1111.

    PubMed  CAS  Google Scholar 

  15. Davies MP, An RH, Doevendans P et al. Developmental changes in ionic channel activity in the embryonic murine heart. Circ Res 1996; 78(1):15–25.

    Article  PubMed  CAS  Google Scholar 

  16. Kiyosue T, Spindler AJ, Noble SJ et al. Background inward current in ventricular and atrial cells of the guinea-pig. Proc Biol Sci 1993; 252(1333):65–74.

    Article  PubMed  CAS  Google Scholar 

  17. Xie LH, Takano M, Noma A. Development of inwardly rectifying K+ channel family in rat ventricular myocytes. Am J Physiol 1997; 272(4 Pt 2):H1741–1750.

    PubMed  CAS  Google Scholar 

  18. Liu W, Yasui K, Opthof T et al. Developmental changes of Ca(2+) handling in mouse ventricular cells from early embryo to adulthood. Life Sci 2002; 71(11):1279–1292.

    Article  PubMed  CAS  Google Scholar 

  19. Chen F, Ding S, Lee BS et al. Sarcoplasmic reticulum Ca(2+)ATPase and cell contraction in developing rabbit heart. J Mol Cell Cardiol 2000; 32(5):745–755.

    Article  PubMed  CAS  Google Scholar 

  20. Huynh TV, Chen F, Wetzel GT et al. Developmental changes in membrane Ca2+ and K+ currents in fetal, neonatal, and adult rabbit ventricular myocytes. Circ Res 1992; 70(3):508–515.

    Article  PubMed  CAS  Google Scholar 

  21. Satoh H, Delbridge LM, Blatter LA et al. Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophys J 1996; 70(3):1494–1504.

    Article  Google Scholar 

  22. Couch JR, West TC, Hoff HE. Development of the action potential of the prenatal rat heart. Circ Res 1969; 24(1):19–31.

    Article  PubMed  CAS  Google Scholar 

  23. Ono K, Ito H. Role of rapidly activating delayed rectifier K+ current in sinoatrial node pacemaker activity. Am J Physiol 1995; 269(2 Pt 2):H453–462.

    PubMed  CAS  Google Scholar 

  24. Sarai N, Matsuoka S, Kuratomi S et al. Role of individual ionic current systems in the SA node hypothesized by a model study. Jpn J Physiol 2003; 53(2):125–134.

    Article  PubMed  Google Scholar 

  25. Chun KR, Koenen M, Katus HA et al. Expression of the IKr components KCNH2 (rERG) and KCNE2 (rMiRP1) during late rat heart development. Exp Mol Med 2004; 36(4):367–371.

    Article  PubMed  CAS  Google Scholar 

  26. Spence SG, Vetter C, Hoe CM. Effects of the class III antiarrhythmic, dofetilide (UK-68,798) on the heart rate of midgestation rat embryos, in vitro. Teratology 1994; 49(4):282–292.

    Article  PubMed  CAS  Google Scholar 

  27. Kilborn MJ, Fedida D. A study of the developmental changes in outward currents of rat ventricular myocytes. J Physiol 1990; 430:37–60.

    PubMed  CAS  Google Scholar 

  28. Artman M. Sarcolemmal Na(+)−Ca2+ exchange activity and exchanger immunoreactivity in developing rabbit hearts. Am J Physiol 1992; 263(5 Pt 2):H1506–1513.

    PubMed  CAS  Google Scholar 

  29. Artman M, Ichikawa H, Avkiran M et al. Na+/Ca2+ exchange current density in cardiac myocytes from rabbits and guinea pigs during postnatal development. Am J Physiol 1995; 268(4 Pt 2):H1714–1722.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Itoh, H. (2013). Electrophysiological Simulation of Developmental Changes in Action Potentials of Cardiomyocytes. In: E-Cell System. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6157-9_6

Download citation

Publish with us

Policies and ethics