A Hybrid Model of CLMS and ACLMS Algorithms for Smart Antennas

  • Y. Rama Krishna
  • P. E. S. N. Krishna Prasad
  • P. V. Subbaiah
  • B. Prabhakara Rao
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 131)


Smart Antenna is a device that enables to steer and modify an arrays beam pattern to enhance the reception of a desired signal, while simultaneously suppressing interfering signals through complex weight selection. The weight selection process is a complex method to get low Half Power Beam Width (HPBW) and Side Lobe Level (SLL). The aim of this task is to minimize the noise and interference effects from external sources. This paper presents a Hybrid based model for Smart Antennas by combining CLMS and Augmented CLMS algorithms. Since CLMS and ACLMS models have their own pros and cons in the process of adaptive beam forming, Hybrid model results a better convergence towards desired signal, Low HPBW and low SLL in the noisy environment.


Hybrid model of CLMS and ACLMS Adaptive array  Adaptive beamforming Smart antennas Wireless sensor networks Complex least mean square (CLMS) Augmented CLMS (ACLMS) Side lobe level (SLL) Half power beam width Error convergence rate 


  1. 1.
    Winters JH (1998) Smart antennas for wireless systems. IEEE Pers Commun 5(1):23–27Google Scholar
  2. 2.
    Godara LC (1997) Applications of antenna arrays to mobile communications. I. Performance improvement. IEEE Proc Feasibility Consid 85(7):1031–1060Google Scholar
  3. 3.
    Stevanovic I, Skrivervik A, Mosig JR (2003) Smart antenna systems for mobile communications. Laboratoire d’Electromagnetisme et d’Acoustique Ecole Polytechnique Federale de Lausanne (2003)Google Scholar
  4. 4.
    Smart Antenna Systems Tutorial, The international engineering consortium.
  5. 5.
    Smart Antennas Beamforming Tutorial.
  6. 6.
    Haykin S, Kailath T (2009) Adaptive filter theory, 4th edn. Pearson EducationGoogle Scholar
  7. 7.
    Mandic D, Vayanos P, Boukis C, Jelfs B, Goh SL, Gautama T, Rutkowski T (2007) Collaborative adaptive learning using hybrid filters. In: ICASSP 2007, vol 3, pp 921924 (2007)Google Scholar
  8. 8.
    Haykin S, Li L (1995) Nonlinear adaptive prediction of non-stationary signals. IEEE Trans Signal Process 43(2):526–535Google Scholar
  9. 9.
    Hirose A (2003) Complex valued neural networks: theories and applications. World Scientific Publications, SingaporeGoogle Scholar
  10. 10.
    Javidi S, Pedzisz M, Goh SL, Mandic DP (2008) The augmented complex least mean square algorithm with application to adaptive prediction problems. In: Proceedings of the 1st IARP workshop on cognitive information processing, pp 54–57 (2008)Google Scholar
  11. 11.
    Mandic DP, Xia Y, Douglas SC (2010) Steady state analysis of the CLMS and augmented CLMS algorithms for non-circular complex signals. In: Proceedings of ASILOMAR, pp 1635–1639 (2010)Google Scholar
  12. 12.
    Mandic DP, Xia Y, Syad AH (2011) An adaptive diffusion augmented CLMS algorithm for distributed filtering of non-circular complex signals. IEEE Signal Process Lett 18(11):659–662Google Scholar
  13. 13.
    Mandic DP, Goh VSL (2009) Complex valued nonlinear adaptive filters noncircularity, widely linear and neural models. Wiley, ChichesterGoogle Scholar
  14. 14.
    Mandic DP, Javidi S, Souretis G, Goh SL (2007) Why a complex valued solution for a real domain problem. In: Proceedings of the 17th IEEE signal processing society workshop on machine learning for, signal processing (2007)Google Scholar
  15. 15.
    Schreier PJ, Scharf LL (2003) Second-order analysis of improper complex random vectors and processes. IEEE Trans Signal Process 51(3):714–725MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Y. Rama Krishna
    • 1
  • P. E. S. N. Krishna Prasad
    • 1
  • P. V. Subbaiah
    • 2
  • B. Prabhakara Rao
    • 3
  1. 1.PVP Siddhartha Institute of TechnologyVijayawadaIndia
  2. 2.Amrita Sai Institute of Science and TechnologyVijayawadaIndia
  3. 3.JNT University KakinadaKakinadaIndia

Personalised recommendations