Conductive Polymer-Based Materials for Medical Electroanalytic Applications

  • Vessela Tsakova
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 56)


Since the discovery of high electrical conductivity in doped polyacetylene in 1977 [1], the investigations in the field of conducting polymers (CPs) have expanded rapidly in number, scope of research, and importance. The 2000 Nobel Prize in Chemistry was awarded to A. J. Heeger, A. McDiarmid, and H. Shirakawa for the discovery and development of electrically conductive polymers. The choice of the Nobel Committee was motivated by the important scientific position that the field has achieved and the consequences in terms of practical applications and of interdisciplinary development between chemistry and physics [2]. In the last decade the field of CPs and various CP-based materials has advanced further into new areas of research and technological developments. One of these intensively progressing areas is the involvement of CP-based materials in electrocatalytical applications, with a strong emphasis set on chemical and biochemical sensing. The electroanalytical response of CPs and CP-based composites was studied for a great number of compounds that are involved in the human metabolism, present medications, or harmful chemicals for humans. The large amount of publications on medical electroanalytical applications of CP-based materials are scattered over a number of specialized journals with main scopes in electroanalytical and analytical chemistry, sensing and biosensing, polymer science, medical studies, etc. Due to the highly spread and abundant literature it is nowadays difficult to get a general idea in this specific field of research. The present chapter attempts to outline the state of the art and hopefully to provoke further effort in this challenging scientific area with practical importance for medical diagnostics and medical treatments.


Ascorbic Acid Uric Acid Redox Mediator NADH Oxidation PANI Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Ascorbic acid


Aminobenzenesulfonic acid




Conducting polymers


Carbon paste electrode


Carbon nanotubes


Cyclic voltammetry




Differential pulse voltammetry




Flow injection analysis




Limit of detection


Molecularly imprented polymer


Mercury sulfate electrode


Multiwalled carbon nanotubes


Nicotinamide adenine dinucleotide








Polyacrilic acid


Poly(2-acryalamido-2-methyl-1-propane-sulfonic acid)
















Rotating disc electrode


Standard calomel electrode


Sodium dodecylsulfate


Standard hydrogen electrode


Single-walled carbon nanotubes


Square wave voltammetry


Uric acid



Financial support of project DTK 02/25 with National Science Fund of Bulgaria is gratefully acknowledged.


  1. 1.
    Shirakawa H, Louis EJ, Mac Diarmid AG, Chiang CK, Heeger AJ. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun. 1977;16:578–80.Google Scholar
  2. 2.
    Norden B, Krutmeijer E. The Nobel Prize in Chemistry, 2000: conductive polymers (advanced information). Stockholm: Information Department, The Royal Swedish Academy of Sciences; 2000. p. 1–16Google Scholar
  3. 3.
    Skotheim TA, Reynolds JR, editors. Handbook of conducting polymers, 3rd edn. Boca Raton: CRC; 2007.Google Scholar
  4. 4.
    Inzelt G. Conductimg polymers. A new era in electrochemistry. Berlin: Springer; 2008.Google Scholar
  5. 5.
    Wallace G, Spinks GM, Kane-Maguire LAP, Teasdale PR. Conductive electroactive polymers: intelligent polymer systems. 3rd ed. Boca Raton: CRC; 2009.Google Scholar
  6. 6.
    Eftekhari A, editor. Nanostructured conductive polymers. Chichester: Wiley; 2010.Google Scholar
  7. 7.
    Cosnier S, Karyakin A, editors. Electropolymerization. Concepts, materials and applications. Weinheim: Wiley; 2010.Google Scholar
  8. 8.
    Elschner A, Kirchmeyer S, Loevenich W, Merker U, Reuter K. PEDOT, Principles and applications of an intrinsically conductive polymer. Boca Raton: CRC; 2011.Google Scholar
  9. 9.
    Dai L, Soundarrajan P, Kim T. Sensors and sensor arrays based on conjugated polymers and carbon nanotubes. Pure Appl Chem. 2002;74:1753–72.Google Scholar
  10. 10.
    Adhikari B, Majumdar S. Polymer in sensor applications. Prog Polym Sci. 2004;29:699–766.Google Scholar
  11. 11.
    Ramanavicius A, Ramanaviciene A, Malinauskas A. Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim Acta. 2006;51:6025–37.Google Scholar
  12. 12.
    Lange U, Roznyatovskaya NV, Mirsky VM. Conducting polymers in chemical sensors and arrays. Anal Chim Acta. 2008;614:1–26.Google Scholar
  13. 13.
    Ashok Kumar S, Chen SM. Electroanalysis of NADH using conducting and redox active polymer/carbon nanotubes modified electrodes—a review. Sensors. 2008;8:739–66.Google Scholar
  14. 14.
    Ates M, Sarac AS. Conducting polymer coated carbon surfaces and biosensor applications. Prog Org Coat. 2009;66:337–58.Google Scholar
  15. 15.
    Rajesh T, Ahuja D. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens Actuators B. 2009;136:275–86.Google Scholar
  16. 16.
    Bobacka J, Ivaska A. Chemical sensors based on conducting polymers. In: Cosnier S, Karyakin A, editors. Electropolymerization concepts, materials and applications. Weinheim: Wiley; 2010. p. 173–87.Google Scholar
  17. 17.
    Long YZ, Li MM, Gu C, Wan M, Duvail JL, Liu Z, et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci. 2011;36:1415–42.Google Scholar
  18. 18.
    Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu FS. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv. 2011;29:169–88.Google Scholar
  19. 19.
    Gerard M, Chaubey A, Malhotra BD. Application of conducting polymers to biosensors. Biosens Bioelectron. 2002;17:345–59.Google Scholar
  20. 20.
    Malhotra BD, Chaubey A. Biosensors for clinical diagnostics industry. Sens Actuators B. 2003;91:117–27.Google Scholar
  21. 21.
    Vidal JC, Garcia-Ruiz E, Castillo JR. Recent advances in electropolymerized conducting polymers in amperometric biosensors. Microchim Acta. 2003;143:93–111.Google Scholar
  22. 22.
    Ahuja T, Mir IA, Kumar D, Rajesh. Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials. 2007;28:791–805.Google Scholar
  23. 23.
    Guimar NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci. 2007;32:876–921.Google Scholar
  24. 24.
    Xia L, Wei Z, Wan M. Conducting polymer nanostructures and their application in biosensors. J Colloid Interface Sci. 2010;341:1–11.Google Scholar
  25. 25.
    Cosnier S, Holzinger M. Electrosynthesized polymers for biosensing. Chem Soc Rev. 2011;40:2146–56.Google Scholar
  26. 26.
    Mulchandani A, Myung NV. Conducting polymer nanowires-based label-free biosensors. Curr Opin Biotechnol. 2011;22:502–8.Google Scholar
  27. 27.
    Nambiar S, Yeow JTW. Conductive polymer-based sensor for biomedical applications. Biosens Bioelectron. 2011;26:1825–32.Google Scholar
  28. 28.
    Dhand C, Das M, Datta M, Malhotra BD. Recent advances in polyaniline based biosensors. Biosens Bioelectron. 2011;26:2811–21.Google Scholar
  29. 29.
    Cosnier S, Holzinger M. Bisensors based on electropolymerized films. In: Cosnier S, Karyakin A, editors. Electropolymerization. Concepts, materials, applications. Weinheim: Wiley; 2010. p. 189–213.Google Scholar
  30. 30.
    Bartlett PN, Cooper JM. A review on the immobilization of enzymes in electropolymerized films. J Electroanal Chem. 1993;362:1–12.Google Scholar
  31. 31.
    Cosnier S. Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens Bioelectron. 1999;14:443–56.Google Scholar
  32. 32.
    Cosnier S. Affinity sensors based on electropolymerized films. Electroanalysis. 2005;17:1701–15.Google Scholar
  33. 33.
    Cosnier S. Recent advances in biological sensors based on electrogenerated polymers: a review. Anal Lett. 2007;40:1260–79.Google Scholar
  34. 34.
    Hyodo K, Nozaki M. High ion selective electrochemical synthesis of polyaniline. Electrochim Acta. 1988;33:165–6.Google Scholar
  35. 35.
    Karyakin AA, Maltsev IA, Lukachova LV. The influence of defects in polyaniline structure on its electroactivity: optimization of ‘self-doped’ polyaniline synthesis. J Electroanal Chem. 1996;402:217–9.Google Scholar
  36. 36.
    Tarver J, Yoo JE, Dennes TJ, Schwatz J, Loo YL. Polymer acid doped polyaniline is electrochemically stable beyond pH 9. Chem Mater. 2009;21:280–6.Google Scholar
  37. 37.
    Lyutov V, Tsakova V, Bund A. Microgravimetric study on the formation and redox behavior of poly(2-acrylamido-2-methyl-1-propanesulfonate)-doped thin polyaniline layers. Electrochim Acta. 2011;56:4803–11.Google Scholar
  38. 38.
    Bartlett PN, Wallace ENK. The oxidation of ascorbate at poly(aniline)-poly(vinylsulfonate) composite coated electrodes. Phys Chem Chem Phys. 2001;3:1491–6.Google Scholar
  39. 39.
    Senthilkumar S, Mathiyarasu J, Phani KLN. Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopamine. J Electroanal Chem. 2005;578:95–103.Google Scholar
  40. 40.
    Tsakova V. Metal-based composites of conducting polymers. In: Eftekhari A, editor. Nanostructured conductive polymers. New York: Wiley; 2010. p. 289–340.Google Scholar
  41. 41.
    Bissessur R. Inorganic-based nanocomposites of conductive polymers. In: Eftekhari A, editor. Nanostructured conductive polymers. Chichester: Wiley; 2010. p. 261–88.Google Scholar
  42. 42.
    Halliwell B. Drug antioxidant effects: a basis for drug selection. Drugs. 1991;42:569–605.Google Scholar
  43. 43.
    Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med. 2009;46:719–30.Google Scholar
  44. 44.
    Malinauskas A, Garjonyte R, Mazeikiene R, Jureviciute I. Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review. Talanta. 2004;64:121–9.Google Scholar
  45. 45.
    Saraceno RA, Pack JG, Ewing AG. Catalysis of slow charge transfer reactions at polypyrrole-coated glassy carbon electrodes. J Electroanal Chem. 1986;197:265–78.Google Scholar
  46. 46.
    Mao H, Pickup P. Electronically conductive anion exchange polymers based on polypyrrole preparation, characterization and electrocatalysis of ascorbic acid oxidation. J Electroanal Chem. 1989;265:127–42.Google Scholar
  47. 47.
    Pournaghi-Azar MH, Ojani R. Electrochemistry and electroactivity of polypyrrole/ferrocyanide films on a glassy carbon electrode. J Solid State Electrochem. 2000;4:75–9.Google Scholar
  48. 48.
    Raoof JB, Ojani R, Rashid-Nadimi S. Preparation of polypyrrole/ferrocianide films modified carbon paste electrode and its application on the electrocatalytic determination of ascorbic acid. Electrochim Acta. 2004;49:271–80.Google Scholar
  49. 49.
    Lyons MEG, Breen W. Ascorbic acid oxidation at polypyrrole-coated electrodes. J Chem Soc Farad Trans. 1991;87:115–23.Google Scholar
  50. 50.
    Gao Z, Chen B, Zi M. Electrochemistry of ascorbic acid at polypyrrole/dodecyl sulphate film-coated electrodes and its application. J Electroanal Chem. 1994;365:197–205.Google Scholar
  51. 51.
    Komsiyska L, Tsakova V. Ascorbic acid oxidation at nonmodified and copper-modified polyaniline and poly-ortho-methoxyaniline coated electrodes. Electroanalysis. 2006;18:807–13.Google Scholar
  52. 52.
    Casella IG, Guascito MR. Electrocatalysis of ascorbic acid on the glassy carbon electrode chemically modified with polyaniline films. Electroanalysis. 1997;9:1381–6.Google Scholar
  53. 53.
    O’Connell P, Gormally C, Pravda M, Guilbault GG. Development of amperometric L-ascorbic acid (Vitamin C) sensor based on electropolymerised aniline for pharmaceutical and food analysis. Anal Chim Acta. 2001;431:239–47.Google Scholar
  54. 54.
    Ivanov S, Tsakova V, Mirsky VM. Conductometric transducing in electrocatalytical sensors: detection of ascorbic acid. Electrochem Commun. 2006;8:643–6.Google Scholar
  55. 55.
    Zhou DM, Xu JJ, Chen HY, Fang HQ. Ascorbate sensor based on “self-doped” polyaniline. Electroanalysis. 1997;9:1185–8.Google Scholar
  56. 56.
    Sun JJ, Zhou DM, Fang HQ, Chen HY. The electrochemical copolymerization of 3,4-dihydroxybenzoic acid and aniline at microdisk gold electrode and its amperometric determination for ascorbic acid. Talanta. 1998;45:851–6.Google Scholar
  57. 57.
    Zhang L, Dong S. The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid. J Electroanal Chem. 2004;568:189–94.Google Scholar
  58. 58.
    Heras JY, Giacobone AFF, Battaglini F. Ascorbate amperometric determination using conducting copolymers from aniline and N-(3-propane sulfonic acid) aniline. Talanta. 2007;71:1684–9.Google Scholar
  59. 59.
    Ambrosi A, Morrin A, Smyth MR, Killard AJ. The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Anal Chim Acta. 2011;609:37–43.Google Scholar
  60. 60.
    Zhang L, Lang Q, Shi Z. Electrochemical synthesis of three-dimensional polyaniline network on 3-aminobenzenesulfonic acid functionalized glassy carbon electrode and its application. Am J Anal Chem. 2010;1:102–12.Google Scholar
  61. 61.
    Kilmartin PA, Martinez A, Bartlett PN. Polyaniline-based microelectrodes for sensing ascorbic acid in beverages. Curr Appl Phys. 2008;8:320–3.Google Scholar
  62. 62.
    Bonastre AM, Bartlett PN. Electrodeposition of PANI films on platinum needle type microelectrodes. Application to the oxidation of ascorbate in human plasma. Anal Chim Acta. 2010;676:1–8.Google Scholar
  63. 63.
    Ge C, Armstrong NR, Saavedra SS. pH-sensing properties of poly(aniline) ultrathin films self-assembled on indium-tin oxide. Anal Chem. 2007;79:1401–10.Google Scholar
  64. 64.
    Lyutov V, Tsakova V. Silver particles-modified polysulfonic acid-doped polyaniline layers: electroless deposition of silver in slightly acidic and neutral solutions. J Solid State Electrochem. 2011;15:2553–61.Google Scholar
  65. 65.
    Lyutov V. Functionalised conducting polymer layers through incorporation of polyanions and metal particles. PhD Thesis, Institute of Physical Chemistry, Bulgarian Academy of Sciences, Sofia; 2013.Google Scholar
  66. 66.
    Xi L, Ren D, Luo J, Zhu Y. Electrochemical analysis of ascorbic acid using copper nanoparticles/polyaniline modified glassy carbon electrode. J Electroanal Chem. 2010;650:127–34.Google Scholar
  67. 67.
    Atta NF, Galal A, Karagoezler E, Russel GC, Zimmer H, Mark Jr HB. Electrochemical detection of some organic and biological molecules at conducting poly(3-methylthiophene) electrodes. Biosens Bioelectron. 1991;6:333–41.Google Scholar
  68. 68.
    Atta NF, Marawi I, Petticrew KL, Zimmer H, Mark HB, Galal A. Electrochemistry and detection of some organic and biological molecules at conducting polymer electrodes. Part3. Evidence of the electrocatalytic effect of the heteroatom of the poly(hetetroarylene) at the electrode/electrolyte interface. J Electroanal Chem. 1996;408:47–52.Google Scholar
  69. 69.
    Erdogdu G, Karagoezler E. Investigation and comparison of the electrochemical behavior of some organic and biological molecules at various conducting polymer electrodes. Talanta. 1997;44:2011–8.Google Scholar
  70. 70.
    Bello A, Giannetto M, Mori G, Seeber R, Terzi F, Zanardi C. Optimization of the DPV potential waveform for determination of ascorbic acid on PEDOT-modified electrodes. Sens Actuators B Chem. 2007;121:430–5.Google Scholar
  71. 71.
    Dutt JSN, Cardosi MF, Livingstone C, Davis J. Diagnostic implications of uric acid in electroanalytical measurements. Electroanalysis. 2005;17:1233–43.Google Scholar
  72. 72.
    Wang Y, Xu H, Zhang J, Li G. Electrochemical sensors for clinic analysis. Sensors. 2008;8:2043–81.Google Scholar
  73. 73.
    Kumar SS, Mathiyarasu J, Phani KLN, Jain YK, Yegnaraman V. Determination of uric acid in the presence of ascorbic acid using poly(3,4-ethylenedioxythiophene)-modified electrodes. Electroanalysis. 2005;17:2281–6.Google Scholar
  74. 74.
    Kalimuthu P, John SA. Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using nanostructured polymer film modified electrode. Talanta. 2010;80:1686–91.Google Scholar
  75. 75.
    Dobay R, Harsanyi G, Visy C. Detection of uric acid with a new type of conducting-polymer based enzymatic sensor by bipotentiostatic technique. Anal Chim Acta. 1999;385:187–94.Google Scholar
  76. 76.
    Kumar SA, Cheng HW, Chen SM. Selective detection of uric acid in the presence of ascorbic acid and dopamine using polymerized luminol film modified glassy carbon electrode. Electroanalysis. 2009;21:2281–6.Google Scholar
  77. 77.
    Belenky P, Bogan KL, Brenner C. NAD+ metabolism on health and disease. Trends Biochem Sci. 2007;32:12–9.Google Scholar
  78. 78.
    Karyakin A. Electropolymerized azines: a new group of electroactive polymers. In: Cosnier S, Karyakin A, editors. Electropolymerization: concepts, materials and applications. Weinheim: Wiley; 2010. p. 93–110.Google Scholar
  79. 79.
    Bartlett PN, Simon E, Toh CS. Modified electrodes for NAD oxidation and dehydrogenase-based biosensors. Bioelectrochemistry. 2002;56:117–22.Google Scholar
  80. 80.
    Gorton L, Dominguez E. Electrochemistry of NAD(P)+/NAD(P)H, encyclopedia of electrochemistry. In: Wilson GS, editor. Bioelectrochemistry. Weinheim: Wiley-VCH; 2002.Google Scholar
  81. 81.
    Gorton L, Dominguez E. Electrocatalytic oxidation of NAD(P)/H at mediator-modified electrodes. Rev Mol Biotechnol. 2002;82:371–92.Google Scholar
  82. 82.
    Atta NF, Galal A, Karagoezler E, Zimmer H, Rubinson JF, Mark Jr HB. Voltammetric studies of the oxidation of reduced nicotinamide adenine dinucleotide at a conducting polymer electrode. Journal of Chemical Society. Chem Commun. 1990;19:1347–9.Google Scholar
  83. 83.
    Schuhmann W, Lammert R, Haemmerle M, Schmidt HL. Electrocatalytic properties of polypyrrole in amperometric electrodes. Biosens Bioelectron. 1991;6:689–97.Google Scholar
  84. 84.
    Jaraba P, Agui L, Yanez-Sedeno P, Pingarron JM. NADH amperometric sensor based on poly(3-methylthiophene)-coated cylindrical carbon fiber microelectrodes: application to the enzymatic determination of L-lactate. Electrochim Acta. 1998;43:3555–65.Google Scholar
  85. 85.
    Somasundrum M, Bannister JV. Mediatorless electrocatalysis at a conducting polymer electrode: application to ascorbate and NADH measurement. J Chem Soc Chem Commun. 1993;1993:1629–31.Google Scholar
  86. 86.
    Bartlett PN, Wallace ENK. The oxidation of β-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes Part II. Kinetics of reaction at poly(aniline)-poly(styrenesulfonate)composites. J Electroanal Chem. 2000;486:23–31.Google Scholar
  87. 87.
    Bartlett PN, Simon E. Measurement of the kinetic isotope effect for the oxidation of NADH at a poly(aniline)-modified electrode. J Am Chem Soc. 2003;125:4014–5.Google Scholar
  88. 88.
    Toh CS, Bartlett PN, Mano N, Aussenac F, Kuhn A, Dufourc EJ. The effect of calcium ions on the electrocatalytic oxidation of NADH by poly(aniline)-poly(vinylsulfonate) and poly(aniline)-poly(sterenesulfonate) modified electrodes. Phys Chem Chem Phys. 2003;5:588–93.Google Scholar
  89. 89.
    Zhou DM, Fang HQ, Chen HY, Ju HX, Wang Y. The electrochemical polymerization of methylene green and its electrocatalysis for the oxidation of NADH. Anal Chim Acta. 1996;329:41–8.Google Scholar
  90. 90.
    Cai CX, Xue KH. Electrochemical polymerization of toluidine blue o and its electrocatalytic activity toward NADH oxidation. Talanta. 1998;47:1107–19.Google Scholar
  91. 91.
    Vasilescu A, Noguer T, Andreescu S, Calas-Blanchard C, Bala C, Marty JL. Strategies for developing NADH detectors based on Meldola Blue and screen-printed electrodes: a comparative study. Talanta. 2003;59:751–65.Google Scholar
  92. 92.
    Vasilescu A, Andreescu S, Bala C, et al. Screen-printed electrodes with electropolymerized Meldola Blue as versatile detectors in biosensors. Biosens Bioelectron. 2003;18:781–90.Google Scholar
  93. 93.
    Gao Q, Wang W, Ma Y, Yang X. Electrooxidative polymerization of phenotiazine derivatives on screen-printed carbon electrode and its application to determine NADH in flow injection system. Talanta. 2004;62:477–82.Google Scholar
  94. 94.
    Zeng J, Wei W, Wu L, Liu X, Li Y. Fabrication of poly(toluidine blue O)/carbon nanotubes composite nanowires and its stable low-potential detection of NADH. J Electroanal Chem. 2006;595:152–60.Google Scholar
  95. 95.
    Dilgin Y, Gorton L, Nisli G. Photoelectrocatalytic oxidation of NADH with electropolymerized toluidine blue O. Electroanalysis. 2007;19:293.Google Scholar
  96. 96.
    Chen Y, Yuan J, Tian C, Wang X. Flow injection analysis and voltammetric detection of NADH with a poly-toluidine blue modified electrode. Anal Sci. 2004;20:507–11.Google Scholar
  97. 97.
    Dai ZH, Liu FX, Lu GF, Bao JC. Electrocatalytic detection of NADH and ethanol at glassy carbon electrode modified with electropolymerized films from methylene green. J Solid State Electrochem. 2008;12:175–80.Google Scholar
  98. 98.
    Karyakin AA, Karyakina EE, Schuhmann W, Schmidt HL. Electropolymerized azines: Part II. In a search of the best electrocatalyst for NADH oxidation. Electroanalysis. 1999;11:553–7.Google Scholar
  99. 99.
    Chi Q, Dong S. Electrocatalytic oxidation and flow injection determination of reduced nicotinamide coenzyme at a glassy carbon electrode modified by a polymer thin film. Analyst. 1994;119:1063–6.Google Scholar
  100. 100.
    Kumar SA, Chen SM. Electrochemically polymerized composites of conducting poly(p-ABSA) and flavins (FAD, FMN, RF) films and their use as electrochemical sensors: a new potent electroanalysis of NADH and NAD+. Sens Actuators B. 2007;123:964–77.Google Scholar
  101. 101.
    Karyakin AA, Bobrova OA, Karyakina EE. Electroreduction of NAD+ to enzymatically active NADH at poly(neutral red) modified electrodes. J Electroanal Chem. 1995;399:179–84.Google Scholar
  102. 102.
    Agui L, Pena-Farfal C, Yanez-Sedeno P, Pingarron JM. Poly-(3-methylthiophene)/carbon nanotubes hybrid composite-modified electrodes. Electrochim Acta. 2007;52:7946–52.Google Scholar
  103. 103.
    Tian SJ, Liu JY, Zhu T, Knoll W. Polyaniline doped with modified gold nanoparticles and its electrochemical properties in neutral aqueous solutions. Chem Commun. 2003;2003:2738–9.Google Scholar
  104. 104.
    Tian SJ, Liu J, Zhu T, Knoll W. Polyaniline/gold nanoparticle multilayer films: assembly, properties, and biological applications. Chem Mater. 2004;16:4103–8.Google Scholar
  105. 105.
    Manesh KM, Santhosh P, Gopalan AI, Lee KP. Electrocatalytic oxidation of NADH at gold nanoparticles loaded poly(3,4-ethylenedioxythiophene)-poly(sterene sulfonic acid) film modified electrode and integration of alcohol dehydrogenase for alcohol sensing. Talanta. 2008;75:1307–14.Google Scholar
  106. 106.
    Balamurugan A, Ho KC, Chen SM, Huang TY. Electrochemical sensing of NADH based on Meldola Blue immobilized silver nanoparticle-conducting polymer electrode. Colloids Surf A Physicochem Eng Asp. 2010;362:1–7.Google Scholar
  107. 107.
    Mao H, Li Y, Liu X, Zhang W, Wang C, El-Deyab SS, et al. The application of novel spindle-lile polypyrrole hollow nanocapsules containing Pt nanoparticles in electrocatalysis oxidation of nicotinamide adenine dinucleotide (NADH). J Colloid Interface Sci. 2011;356:757–62.Google Scholar
  108. 108.
    Lange U, Mirsky VM. Chemosensitive nanocomposite for conductometric detection of hydrazine and NADH. Electrochim Acta. 2011;56:3679–84.Google Scholar
  109. 109.
    Zhang M, Yamaguchi A, Morita K, Termae N. Electrochemical synthesis of Au/polyaniline-poly(4-sterenesulfonate) hybrid nanoarray for sensitive biosensor design. Electrochem Commun. 2008;10:1090–3.Google Scholar
  110. 110.
    Gao Q, Cui X, Yang F, Ma Y, Yang X. Preparation of poly(thionine) modified screen printed electrode and its application to determine NADH in flow injection analysis system. Biosens Bioelectron. 2003;19:277–82.Google Scholar
  111. 111.
    Malitetsta C, Palmisano F, Torsi L, Zambonin PG. Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Anal Chem. 1990;62:2735–40.Google Scholar
  112. 112.
    Bartlett PN, Birkin PR, Palmisano F, De Benedetto G. A study on the direct electrochemical communication between horseradish peroxidase and a poly(aniline) modified electrode. J Chem Soc Farad Trans. 1996;92:3123–30.Google Scholar
  113. 113.
    Raffa D, Leung KT, Battaglini F. A microelectrochemical enzyme transistor based on an N-alkylated polyaniline and its application to determine hydrogen peroxide at neutral pH. Anal Chem. 2003;75:4983–7.Google Scholar
  114. 114.
    Gu Y, Chen CC. Eliminating the interference of oxygen for sensing hydrogen peroxide with polyaniline modified electrode. Sensors. 2008;8:8237–47.Google Scholar
  115. 115.
    Yang Y, Mu S. Determination of hydrogen peroxide using amperometric sensor of polyaniline doped with ferrocenesulfonic acid. Biosens Bioelectron. 2005;21:74–8.Google Scholar
  116. 116.
    Chen C, Sun C, Gao Y. Amperometric sensor for hydrogen peroxide based on poly(aniline-co-p-aminophenol). Electrochem Commun. 2009;11:450–3.Google Scholar
  117. 117.
    Wang Y, Huang J, Zhang C, Wei J, Zhou X. Determination of hydrogen peroxide in rainwater by using a polyaniline film and platinum particles co-modified carbon fiber microelectrode. Electroanalysis. 1998;10:776–8.Google Scholar
  118. 118.
    Li Y, Lenigk R, Wu X, Gruendig B, Dong S, Renneberg R. Investigation of oxygen- and hydrogen peroxide reduction on platinum particles dispersed on poly(o-phenylenediamine) film modified glassy carbon electrodes. Electroanalysis. 1998;10:671–6.Google Scholar
  119. 119.
    Kondratiev VV, Pogulaichenko NA, Tolstopjatova EG, Malev VV. Hydrogen peroxide electroreduction on composite PEDOT films with included gold nanoparticles. J Solid State Electrochem. 2011;15:2383–93.Google Scholar
  120. 120.
    Zhang T, Yuan R, Chai Y, Li W, Ling S. A novel nonenzymatic hydrogen peroxide sensor based on a polypyrrole nanowire-copper nanocomposite modified gold electrode. Sensors. 2008;8:5141–52.Google Scholar
  121. 121.
    Ojani R, Raoof JB, Norouzi B. Carbon paste electrode modified by cobalt ions dispersed into poly(N-methylaniline) preparing in the presence of SDS: application in electrocatalytic oxidation of hydrogen peroxide. J Solid State Electrochem. 2010;14:621–31.Google Scholar
  122. 122.
    Park S, Boo H, Chung TD. Electrochemical non-enzymatic glucose sensors. Anal Chim Acta. 2006;556:46–57.Google Scholar
  123. 123.
    Toghill KE, Compton RG. Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci. 2010;5:1246–301.Google Scholar
  124. 124.
    Casella IG, Cataldi TRI, Guerrieri A, Desimoni E. Copper dispersed into polyaniline films as an amperometric sensor in alkaline solutions of amino acids and polyhydric compounds. Anal Chim Acta. 1996;335:217–25.Google Scholar
  125. 125.
    Farrel ST, Breslin CB. Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles. Electrochim Acta. 2004;49:4497–503.Google Scholar
  126. 126.
    Stoyanova A, Tsakova V. Electrooxidation of glucose on copper-modified polyaniline layers in alkaline solution. Bulg Chem Commun. 2008;40:286–90.Google Scholar
  127. 127.
    Tsakova V. How to affect number, size, and location of metal particles deposited in conducting polymer layers. J Solid State Electrochem. 2008;12:1421–34.Google Scholar
  128. 128.
    Peng XY, Li W, Liu XX, Hua PJ. Electrodeposition of NiOx/PANI composite film and its catalytic properties towards electrooxidations of polyhydroxyl compounds. J Appl Polym Sci. 2007;105:2260–4.Google Scholar
  129. 129.
    Becerik I, Kadirgan F. Glucose sensitivity of platinum-based alloys incorporated in polypyrrole films at neutral media. Synth Met. 2001;124:379–84.Google Scholar
  130. 130.
    Terzi F, Zanfrognini B, Zanardi C, Pigani L, Seeber R. Poly(3,4-ethylenedioxythiophene)/Au-nanoparticles composite as electrode coating suitable for electrocatalytic oxidation. Electrochim Acta. 2011;56:3575–9.Google Scholar
  131. 131.
    Geetha S, Rao CRK, Vijayan M, Trivedi DC. Biosensing and drug delivery by polypyrrole. Anal Chim Acta. 2006;568:119–25.Google Scholar
  132. 132.
    Zhang X, Ju H, Wang J, editors. Electrochemical sensors, bisensors and their biomedical applications. Academic, Boston; 2008.Google Scholar
  133. 133.
    Lexikon R. Medizin. Muenchen: Urban & Schwarzenberg; 1987.Google Scholar
  134. 134.
    Bozzi Y, Borrelli E. Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it? Trends Neurosci. 2006;29:167–74.Google Scholar
  135. 135.
    Perry M, Li Q, Kennedy RT. Review on recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta. 2009;653:1–22.Google Scholar
  136. 136.
    Mark HB, Atta N, Ma YL, Petticrew KL, Zimmer H, Shi Y, et al. The electrochemistry of neurotransmitters at conducting organic polymer electrodes: electrocatalysis and analytical applications. Bioelectrochem Bioelectron. 1995;38:229–45.Google Scholar
  137. 137.
    Gao Z, Zi M, Chen B. Permeability controllable overoxidised polypyrrole film modified glassy carbon electrodes. Anal Chim Acta. 1994;286:213–8.Google Scholar
  138. 138.
    Gao Z, Yap D, Zhang Y. Voltammetric determination of dopamine in a mixture of dopamine and ascorbic acid at a deactivated polythiophene film modified electrode. Anal Sci. 1998;14:1059–63.Google Scholar
  139. 139.
    Pihel K, Walker QD, Wightman RM. Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry. Anal Chem. 1996;68:2084–9.Google Scholar
  140. 140.
    Kang TF, Shen GL, Yu RQ. Permselectivity of neurotransmitters at overoxidized polypyrrole-film-coated glassy carbon electrodes. Talanta. 1996;43:2007–13.Google Scholar
  141. 141.
    Zhang X, Ogorevc B, Tavcar G, Svegl IG. Over-oxidized polypyrrole-modified carbon fibre ultramicroelectrode with an integrated silver/silver chloride reference electrode for the selective voltammetric measurement of dopamine in extremely small sample volumes. Analyst. 1996;121:1817–22.Google Scholar
  142. 142.
    Palmisano F, Malitetsta C, Centonze D, Zambonin PG. Correlation between permselectivity and chemical structure of overoxidized polypyrrole membranes used in electroproduced enzyme biosensors. Anal Chem. 1995;67:2207–11.Google Scholar
  143. 143.
    Yin T, Wei W, Zeng J. Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated β-cyclodextrin. Anal Bioanal Chem. 2006;386:2087–94.Google Scholar
  144. 144.
    Balamurugan A, Chen SM. Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid. Anal Chim Acta. 2007;596:92–8.Google Scholar
  145. 145.
    Atta N, El-Kady MF, Galal A. Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoclusters sensor. Anal Biochem. 2010;400:78–88.Google Scholar
  146. 146.
    Lide DR, editor. Handbook of chemistry and physics, 84th edn. Boca Raton: CRC; 2004.Google Scholar
  147. 147.
    Tse DCS, McCreey RL, Adams RN. Potential oxidative pathways of brain catecholamines. J Med Chem. 1976;19:37–40.Google Scholar
  148. 148.
    Justice Jr JB, Jaramillo A. Selectivity and kinetics of ctecholamines at modified carbon paste electrodes. J Electrochem Soc. 1984;131:106C.Google Scholar
  149. 149.
    Justice Jr JB. Introduction to in-vivo volatmmetry. In: Adams RN, Justice Jr JB, editors. Voltammetry in the neurosciences. Clifton: Humana; 1987. p. 3–101.Google Scholar
  150. 150.
    Atta NF, El-Kady MF, Galal A. Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol. Sens Actuators B. 2009;141:566–74.Google Scholar
  151. 151.
    D’Eramo F, Sereno LE, Arevalo AH. Preparation, characterization and analytical applications of a new and novel electrically conducting polymer. Electroanalysis. 2006;18:1523–30.Google Scholar
  152. 152.
    Tu X, Xie Q, Jiang S, Yao S. Electrochemical quartz crystal impedance study on the overoxidation of polypyrrole-carbon nanotubes composite films for amperometric detection of dopamine. Biosens Bioelectron. 2007;22:2819–26.Google Scholar
  153. 153.
    Ghita M, Arrigan DWM. Dopamine voltammetry at overoxidised polyindole electrodes. Electrochim Acta. 2004;49:4743–51.Google Scholar
  154. 154.
    Ekinci E, Erdogdu G, Karagoezler E. Preparation, optimization and voltammetric characteristics of poly(o-phenylenediamine)film as a dopamine-selective polymeric membrane. J Appl Polym Sci. 2001;79:327–32.Google Scholar
  155. 155.
    Selvaraju T, Ramaraj R. Simultaneous determination of dopamine and serotonin in the presence of ascorbic acid and uric acid at poly(o-phenylenediamine) modified electrode. J Appl Electrochem. 2003;33:759–62.Google Scholar
  156. 156.
    Mo JW, Ogorevc B. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber. Anal Chem. 2001;73:1196–202.Google Scholar
  157. 157.
    Mathiyarasu J, Senthilkumar S, Phani KLN, Yegnaraman V. Selective detection of dopamine using functionalized polyaniline composite electrode. J Appl Electrochem. 2005;35:513–9.Google Scholar
  158. 158.
    Wang HS, Li TH, Jia WL, Xu HY. Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Biosens Bioelectron. 2006;22:664–9.Google Scholar
  159. 159.
    Harley CC, Rooney AD, Breslin CB. The selective determination of dopamine at a polypyrrole film doped with sulfonated β-cyclodextrins. Sens Actuators B. 2010;150:498–504.Google Scholar
  160. 160.
    Atta NF, Galal A, Ahmed RA. Poly(3,4-ethylene-dioxythiophene) electrode for the selective determination of dopamine in presence of sodium dodecyl sulfate. Bioelectrochemistry. 2011;80:132–41.Google Scholar
  161. 161.
    Li Y, Wang P, Wang L, Lin X. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosens Bioelectron. 2007;22:3120–5.Google Scholar
  162. 162.
    Mathiyarasu J, Senthilkumar S, Phani KLN, Yegnaraman V. PEDOT-Au nanocomposite film for electrochemical sensing. Mater Lett. 2008;62:571–3.Google Scholar
  163. 163.
    Stoyanova A, Tsakova V. Copper-modified poly(3,4-ethylenedioxythiophene) layers for selective determination of dopamine in the presence of ascorbic acid I. Role of the polymer layer thickness. J Solid State Electrochem. 2010;14:1947–55.Google Scholar
  164. 164.
    Stoyanova A, Tsakova V. Copper-modifiedpoly(3,4-ethylenedioxythiophene) layers for selective determination of dopamine in the presence of ascorbic acid II. Role of the characteristics of the metal deposit. J Solid State Electrochem. 2010;14:1957–65.Google Scholar
  165. 165.
    Jin G, Zhang Y, Cheng W. Poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid. Sens Actuators B. 2005;107:528–34.Google Scholar
  166. 166.
    Jeyalakshmi SR, Senthilkumar S, Mathiyarasu J, Phani KLN, Yegnaraman V. Simultaneous determination of ascorbic acid, dopamine and uric acid using PEDOT polymer modified electrode. Indian J Chem. 2007;46A:957–61.Google Scholar
  167. 167.
    Vasantha VS, Chen SM. Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy) thiophene film modified electrodes. J Electroanal Chem. 2006;592:77–87.Google Scholar
  168. 168.
    Bouchta D, Izaoumen N, Zejli H, El Kaoutit M, Temsamani KL. Electroanalytical properties of a novel PPY/β-cyclodextrin coated electrode. Anal Lett. 2005;38:1019–36.Google Scholar
  169. 169.
    Atta NF, El-Kady MF. Novel poly(3-methylthiophene)/Pd, Pt nanoparticle sensor: synthesis, characterization and its application to the simultaneous analysis of dopamine and ascorbic acid in biological fluids. Sens Actuators B. 2010;145:299–310.Google Scholar
  170. 170.
    Atta NF, El-Kady MF. Poly(3-methylthiophene)/palladium sub-micro-modified sensor electrode. Part II: voltammetric and EIS studies, and analysis of catecholamine neurotransmitters, ascorbic acid and acetaminophen. Talanta. 2009;79:639–47.Google Scholar
  171. 171.
    Huang X, Li Y, Wang P, Wang L. Sensitive determination of dopamine and uric acid by the use of a glassy carbon electrode modified with poly(3-methylthiophene)/gold nanoparticle composites. Anal Sci. 2008;24:1563–8.Google Scholar
  172. 172.
    Stoyanova A, Ivanov S, Tsakova V, Bund A. Au nanoparticle-polyaniline nanocomposite layers obtained through Layer -by-Layer adsorption for the simultaneous determination of dopamine and uric acid. Electrochim Acta. 2011;56:3693–9.Google Scholar
  173. 173.
    Harish S, Mathiyarasu J, Phani KLN, Yegnaraman V. PEDOT/Palladium composite material: synthesis, characterization and application to simultaneous determination of dopamine and uric acid. J Appl Electrochem. 2008;38:1583–8.Google Scholar
  174. 174.
    Ulubay S, Dursun Z. Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid. Talanta. 2011;80:1461–6.Google Scholar
  175. 175.
    Dursun Z, Pelit L, Taniguchi I. Voltammetric determination of ascorbic acid and dopamine simultaneously at a single crystal Au(111) electrode. Turk J Chem. 2009;33:223–31.Google Scholar
  176. 176.
    Zen JM, Chung HH, Senthilkumar S. Selective detection of o-diphenols on copper-plated screen-printed electrodes. Anal Chem. 2002;74:1202–6.Google Scholar
  177. 177.
    Thiagarajan S, Yang RF, Chen SM. Palladium nanoparticles modified electrode for the selective detection of catecholamine neurotransmitters in presence of ascorbic acid. Bioelectrochemistry. 2009;75:163–9.Google Scholar
  178. 178.
    Huang J, Liu J, Hou H, You T. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens Bioelectron. 2008;24:632–7.Google Scholar
  179. 179.
    Terzi F, Zanardi C, Martina V, Pigani L, Seeber R. Electrochemical, spectroscopic and microscopic characterisation of novel poly(3,4-ethylenedioxythiophene)/gold nanoparticles composite materials. J Electroanal Chem. 2008;619–620:75–82.Google Scholar
  180. 180.
    Zanardi C, Terzi F, Seeber R. Composite electrode coatings in amperometric sensors. Effect of differently encapsulated gold nanoparticles in poly(3,4-ethylenedioxythiophene) system. Sens Actuators B. 2010;148:277–82.Google Scholar
  181. 181.
    Lupu S, Parenti F, Pigani L, Seeber R, Zanardi C. Differential pulse techniques on modified conventional-size and microelectrodes. Electroactivity of poly[4,4′-bis(butylsulfanyl)-2,2′-bithiophene] coating towards dopamine and ascorbic acid oxidation. Electroanalysis. 2003;15:715–25.Google Scholar
  182. 182.
    Kawde RB, Santhanam KSV. An in vitro electrochemical sensing of dopamine in the presence of ascorbic acid. Bioelectrochem Bioenerg. 1995;38:405–9.Google Scholar
  183. 183.
    Roy PR, Okajima T, Ohsaka T. Simultaneous analysis of dopamine and ascorbic acid using poly(N, N-dimethylaniline)-modified electrodes. Bioelectrochemistry. 2003;59:11–9.Google Scholar
  184. 184.
    Fabre B, Taillebois L. Poly( aniline boronic аcid) based conductimetric sensor of dopamine. Chem Commun. 2003;2003:2982–3.Google Scholar
  185. 185.
    Raoof JB, Ojani R, Rashid-Nadimi S. Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films. Electrochim Acta. 2005;50:4694–8.Google Scholar
  186. 186.
    Senthilkumar S, Mathiyarasu J, Phani KLN. Simultaneous determination of dopamine and ascorbic acid on poly (3,4–ethylenedioxythiophene) modified glassy carbon electrode. J Solid State Electrochem. 2006;10:905–13.Google Scholar
  187. 187.
    Lupu S, Lete C, Marin M, Totir N, Balaure PC. Electrochemical sensors based on platinum electrodes modified with hybrid inorganic–organic coatings for determination of 4-nitrophenol and dopamine. Electrochim Acta. 2009;54:1932–8.Google Scholar
  188. 188.
    Lupu S, del Campo FJ, Munoz FX. Development of microelectrode arrays modified with inorganic–organic composite materials for dopamine electroanalysis. J Electroanal Chem. 2010;639:147–53.Google Scholar
  189. 189.
    Ates M, Castillo J, Sarac AS, Schuhmann W. Carbon fiber microelectrodes electrocoated with polycarbazole and poly(carbazole-co-p-tolylsulfonyl pyrrole) films for the detection of dopamine in presence of ascorbic acid. Microchim Acta. 2008;160:247–51.Google Scholar
  190. 190.
    Pandey PC, Chauhan DS, Singh V. Poly(indole-6-carboxylic acid) and tetracyanoquinodimethane-modified electrode for selective oxidation of dopamine. Electrochim Acta. 2009;54:2266–70.Google Scholar
  191. 191.
    Gopalan AI, Lee KP, Manesh KM, Santhosh P, Kim JH, Kang JS. Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode. Talanta. 2007;71:1774–81.Google Scholar
  192. 192.
    Li J, Lin X. Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode. Sens Actuators B. 2007;124:486–93.Google Scholar
  193. 193.
    Prakash S, Rao CRK, Vijayan M. Polyaniline-polyelectrolyte-gold(0) ternary nanocomposites: synthesis and electrochemical properties. Electrochim Acta. 2009;54:5919–27.Google Scholar
  194. 194.
    Tsakova V, Ivanov S, Lange U, Stoyanova A, Lyutov V, Mirsky VM. Electroanalytical applications of nanocomposites from conducting polymers and metallic nanoparticles prepared by layer-by-layer deposition. Pure Appl Chem. 2011;83:345–58.Google Scholar
  195. 195.
    Yan W, Feng X, Chen X, Li X, Zhu JJ. A selective dopamine biosensor based on AgCl@polyaniline core-shell nanocomposites. Bioelectrochemistry. 2008;72:21–7.Google Scholar
  196. 196.
    Kawde RB, Laxmeshwar NB, Santhanam KSV. A selective sensing of dopa in the presence of adrenaline. Sens Actuators B. 1995;23:35–9.Google Scholar
  197. 197.
    Bouchta D, Izaoumen N, Zejli H, Kaoutit ME, Temsamani KR. A novel electrochemical synthesis of poly-3-methylthiophene-γ-cyclodextrin film Application for the analysis of chlorpromazine and some neurotransmitters. Biosens Bioelectron. 2005;20:2228–35.Google Scholar
  198. 198.
    Izaoumen N, Bouchta D, Zejli H, El Kaoutit M, Stalcuup A, Temsamani K. Electrosynthesis and analytical performances of functionalized poly(pyrrole/β-cyclodextrin) films. Talanta. 2005;66:111–7.Google Scholar
  199. 199.
    Izaoumen N, Bouchta D, Zejli H, El Kaoutit M, Temsamani K. The electrochemical behavior of neurotransmitters at a poly(pyrrole-β-cyclodextrin) modified glassy carbon electrode. Anal Lett. 2005;38:1869–85.Google Scholar
  200. 200.
    Shahrokhian S, Asadian E. Electrochemoical determination of L-dopa in the presence of ascorbic acid on the surface of the glassy carbon elecrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron. J Electroanal Chem. 2009;636:40–6.Google Scholar
  201. 201.
    Wang HS, Huang DQ, Liu RM. Study on the electrochemical behavior of epinephrine at a poly(3-methylthiophene)-modified glassy carbon electrode. J Electroanal Chem. 2004;570:83–90.Google Scholar
  202. 202.
    Lu X, Li Y, Du J, Zhou X, Xue Z, Liu X, et al. A novel nanocomposites sensor for epinephrine detection in the presence of uric acid and ascorbic acids. Electrochim Acta. 2011;56:7261–6. doi: 10.1016/j.electacta.2011.06.056.Google Scholar
  203. 203.
    Kalimuthu P, John SA. Selective determination of norepinephrine in the presence of ascorbic and uric acids using an ultrathin polymer modified electrode. Electrochim Acta. 2011;56:2428–32.Google Scholar
  204. 204.
    Li J, Lin XQ. Electrodeposition of gold nanoparticles on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid. Anal Chim Acta. 2007;596:222–30.Google Scholar
  205. 205.
    Shiigi H, Okamura K, Kijima D, Deore B, Sree U, Nagaoka T. An overoxidized polypyrrole/dodecylsulfonate micelle composite film for amperometric serotonin sensing. J Electrochem Soc. 2003;150:H119–23.Google Scholar
  206. 206.
    Peng H, Zhang L, Soeller C, Travas-Sejdic J. Conducting polymers for electrochemical DNA sensing. Biomaterials. 2009;30:2132–48.Google Scholar
  207. 207.
    Arshak K, Velusamy V, Korostynska O, Oliwa-Stasiak K, Adley C. Conducting polymers and their applications to biosensors: emphasizing on foodborne pathogen detection. IEEE Sens J. 2009;9:1942–51.Google Scholar
  208. 208.
    Boopathi M, Won MS, Shim YB. A sensor for acetaminophen in a blood medium using a Cu(II)-conducting polymer complex modified electrode. Anal Chim Acta. 2004;512:191–7.Google Scholar
  209. 209.
    Mehretie S, Admassie S, Hunde T, Tessema M, Solomon T. Simultaneous determination of N-acetyl-p-aminophenol and p-aminophenol with poly(3,4-ethylenedioxythiophene) modified glassy carbon electrode. Talanta. 2011;85:1376–82.Google Scholar
  210. 210.
    Fan Y, Liu JH, Yang CP, Yu M, Liu P. Graphene-polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol. Sens Actuators B. 2011;157:669–74.Google Scholar
  211. 211.
    Oezcan L, Sahin Y. Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode. Sens Actuators B. 2007;127:362–9.Google Scholar
  212. 212.
    Li Y, Sankar Y. Polyaniline and poly(flavin adenine dinucleotide) doped multi-walled carbon nanotubes for p-acetamidophenol sensor. Talanta. 2009;79:486–92.Google Scholar
  213. 213.
    Atta N, Galal A, Rasha A. Direct and simple electrochemical determination of morphine at PEDOT modified Pt electrodes. Electroanalysis. 2011;23:737–46.Google Scholar
  214. 214.
    Yeh WM, Ho KC. Amperometric morphine sensing using a molecularly imprinted polymer-modified electrode. Anal Chim Acta. 2005;542:76–82.Google Scholar
  215. 215.
    Ho KC, Yeh WM, Tung TS, Liao JY. Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophene) immobilized molecularly imprinted particles prepared by precipitation polymerization. Anal Chim Acta. 2005;542:90–6.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Physical Chemistry, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations