Skip to main content
Book cover

Heart Valves pp 283–320Cite as

In Vitro Testing of Heart Valve Substitutes

  • Chapter
  • First Online:

Abstract

This chapter summarizes in vitro test methods for qualifying the design and manufacture of a heart valve substitute. The tests discussed herein are not intended to represent an exhaustive treatise of all potential in vitro heart valve tests, but rather to highlight those tests intended to characterize the primary functions and performance parameters of a heart valve substitute. The test methods focus primarily on the implantable device; however, there are many additional in vitro test methods beyond those described that are applicable to the implantable device (e.g., biocompatibility, MRI compatibility) as well as to other elements of a heart valve system. Specification of the comprehensive set of appropriate qualification tests and methods for a device under evaluation are to be derived from the risk assessment for the given device with consideration to the target patient population, valve implant position, and device design. The results from the in vitro testing effort provide a substantial and critical part of the regulatory submission package for the device prior to clinical implantation [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ε/N:

Strain/life

AWT:

Accelerated wear test

bpm:

Beats per minute

COF:

Chronic outward force

CT:

Computed tomography

DTA:

Damage tolerance analysis

EOA:

Effective orifice area

FCG:

Fatigue crack growth

FDA:

Food and Drug Administration

FEA:

Finite element analysis

IFU:

Instructions for use

ISO:

International Organization for Standardization

MDCT:

Multi-detector computed tomography

RRF:

Radial resistive force

S/N:

Stress/life

References

  1. Kaplan AV, Baim DS, Smith JJ et al (2004) Medical device development: from prototype to regulatory approval. Circulation 109:3068–3072

    Article  PubMed  Google Scholar 

  2. Food and Drug Administration (1994) Draft Replacement heart valve guidance. Division of Cardiovascular, Respiratory, and Neurological Devices, U.S. Department of Health and Human Services, 14 Oct 1994

    Google Scholar 

  3. ISO 5840:2005, Cardiovascular implants, Cardiac valve prostheses, ISBN 1-57020-237-0

    Google Scholar 

  4. ISO/DIS 5840-3:2012(E), Cardiovascular implants, Cardiac valve prostheses, Part 3: heart valve substitutes implanted by minimally invasive techniques, 20 Sep 2012

    Google Scholar 

  5. ISO 25539-1, Cardiovascular implants, Endovascular devices, Part 1: endovascular prostheses

    Google Scholar 

  6. ISO 25539-2, Cardiovascular implants, Endovascular devices, Part 2, vascular stents

    Google Scholar 

  7. Food and Drug Administration (2010) Nonclinical engineering tests and recommended labeling for intravascular stents and associated delivery systems guidance. U.S. Department of Health and Human Services, Center for Devices and Radiological Health, 18 April 2010

    Google Scholar 

  8. Vlahakes GJ (2007) Mechanical heart valves: the test of time. Circulation 116:1759–1760

    Article  PubMed  Google Scholar 

  9. Svennevig JL, Abdelnoor M, Nitter-Hauge S (2007) Twenty-five-year experience with the Medtronic-Hall valve prosthesis in the aortic position: a follow-up cohort study of 816 consecutive patients. Circulation 116:1795–1800

    Article  PubMed  Google Scholar 

  10. David TE, Armstrong S, Maganti M (2010) Hancock II bioprosthesis for aortic valve replacement: the gold standard of bioprosthetic valves durability? Ann Thorac Surg 90:775–781

    Article  PubMed  Google Scholar 

  11. Jamieson WRE, Burr LH, Miyagishima RT et al (2005) Carpentier-Edwards supra-annular aortic porcine bioprosthesis: clinical performance over 20 years. J Thorac Cardiovasc Surg 130:994–1000

    Article  PubMed  Google Scholar 

  12. Mykén PSU, Bech-Hansen O (2009) A 20-year experience of 1712 patients with the Biocor porcine bioprosthesis. J Thorac Cardiovasc Surg 137:76–81

    Article  PubMed  Google Scholar 

  13. Yankah CA, Pasic M, Musci M et al (2008) Aortic valve replacement with the Mitroflow pericardial bioprosthesis: durability results up to 21 years. J Thorac Cardiovasc Surg 138:688–696

    Article  Google Scholar 

  14. Gerckens U, Schuler G, Bonan R et al (2011) Four-year durability and patient survival with CoreValve transcatheter aortic valve. Eur Heart J 32(abstract supplement):169

    Google Scholar 

  15. Richard GJ, Cao H (1996) Structural failure of pyrolytic carbon heart valves. J Heart Valve Dis 5(suppl I):S79–S85

    PubMed  Google Scholar 

  16. Dagum P, Green GR, Nistal FJ et al (1999) Deformational dynamics of the aortic root: modes and physiologic determinants. Circulation 100:II54–II62

    PubMed  CAS  Google Scholar 

  17. Lansac E, Lim HS, Shomura Y et al (2002) A four-dimensional study of the aortic root dynamics. Eur J Cardiothorac Surg 22:497–503

    Article  PubMed  CAS  Google Scholar 

  18. Hasenkam JM, Nygaard H, Paulsen PK et al (1994) What force can the myocardium generate on a prosthetic mitral valve ring? An animal experimental study. J Heart Valve Dis 3:324–329

    PubMed  CAS  Google Scholar 

  19. Shandas R, Mitchell M, Conrad C et al (2001) A general method for estimating deformation and forces imposed in vivo on bioprosthetic heart valves with flexible annuli: in vitro and animal validation studies. J Heart Valve Dis 10:495–504

    PubMed  CAS  Google Scholar 

  20. Jenson MO, Jensen H, Nielsen SL et al (2008) What forces act on a flat rigid mitral annuloplasty ring? J Heart Valve Dis 17:267–275

    Google Scholar 

  21. Peng LF, McElhinney DB, Nugent AW et al (2006) Endovascular stenting of obstructed right ventricle-to-pulmonary artery conduits: a 15-year experience. Circulation 113:2598–2605

    Article  PubMed  Google Scholar 

  22. Nordmeyer J, Khambadkone S, Coats L et al (2007) Risk stratification, systematic classification, and anticipatory management strategies for stent fracture after percutaneous pulmonary valve implantation. Circulation 115:1392–1397

    Article  PubMed  Google Scholar 

  23. Schoenhagen P, Hill A, Kelley T et al (2011) In vivo imaging and computational analysis of the aortic root. Application in clinical research and design of transcatheter aortic valve systems. J Cardiovasc Transl Res 4:459–469

    Article  PubMed  Google Scholar 

  24. ISO 14971:2007 (2007) Medical devices, Application of risk management to medical devices, Feb 2007

    Google Scholar 

  25. Cao H (1996) Mechanical performance of pyrolytic carbon in prosthetic heart valves. J Heart Valve Dis 5(suppl I):S32–S49

    PubMed  Google Scholar 

  26. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  27. Sacks MS, Wei S (2003) Multiaxial mechanical behavior of biological materials. Annu Rev Biomed Eng 5:251–284

    Article  PubMed  CAS  Google Scholar 

  28. Duerig TW, Melton KN, Stockel D, Wayman CM (eds) (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, London, p 369

    Google Scholar 

  29. Rebelo N, Zipse A, Schlun M, Dreher G (2011) A material model for the cyclic behavior of Nitinol. J Mater Eng Perform 20:605–612

    Article  CAS  Google Scholar 

  30. Marquez S, Hon RT, Yoganathan AP (2001) Comparative hydrodynamic evaluation of bioprosthetic heart valves. J Heart Valve Dis 10:802–811

    PubMed  CAS  Google Scholar 

  31. Ryder JK, Cao H (1996) Structural integrity assessment of heart valve prostheses: a damage tolerance analysis of the CarboMedics prosthetic heart valve. J Heart Valve Dis 5(suppl I): S86–S96

    PubMed  Google Scholar 

  32. ASTM F2079 standard test method for measuring intrinsic elastic recoil of balloon expandable stents

    Google Scholar 

  33. Duerig TN, Tolomeo DE (2002) An overview of superelastic stent design. In: Russett S, Pelton A (eds) Proceedings of the shape memory and superelastic technologies meeting 2000, Fremont, CA, p 585

    Google Scholar 

  34. Popelar CF, Hoang T (2003) On the temperature-accelerated fatigue characterization of polymers. In: Fourth international conference on mechanics of time dependent materials, Lake Placid, NY, 7–10 Oct 2003

    Google Scholar 

  35. Pelton AR, Schroeder V, Mitchell MR et al (2008) Fatigue and durability of Nitinol stents. J Mech Behav Biomed Mater 1:153–164

    Article  PubMed  CAS  Google Scholar 

  36. Gong XY, Chwirut D, Mitchell M et al (2009) Fatigue to fracture: an informative, fast, and reliable approach for assessing medical implant durability. J ASTM Int 6:1–10

    Article  Google Scholar 

  37. ASTM D4169-09 standard practice for performance testing of shipping containers and systems

    Google Scholar 

  38. IEC 60068-2-47 Ed. 3.0 b:2005, Environmental testing: mounting of specimens for vibration, impact and similar dynamic tests

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A. Kelley MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kelley, T.A., Marquez, S., Popelar, C.F. (2013). In Vitro Testing of Heart Valve Substitutes. In: Iaizzo, P., Bianco, R., Hill, A., St. Louis, J. (eds) Heart Valves. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6144-9_12

Download citation

Publish with us

Policies and ethics