Parameterisation of Individual Working Dynamics

  • S. Huet
  • M. Lenormand
  • G. Deffuant
  • F. Gargiulo


How do European rural areas evolve? While for decades the countryside in many regions of Europe was synonymous with inevitable decline, nowadays, some areas experience a rebirth, even in areas where until recently development was not considered possible. Our modelling effort aims at better understanding these heterogeneities. To deal with this objective, the modelling and the parameterisation should be strongly constraint by available data. This chapter focusses on the modelling of the individual working dynamics describing how we can design the entering on the labour marking, the job search decision and process and every other process related to work from available data. We argue about the utility of large existing databases to design complex integrated individual dynamics.


Labour Market Activity Sector Labour Force Survey Employment Survey Rural Municipality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been funded under the PRIMA (Prototypical policy impacts on multifunctional activities in rural municipalities) collaborative project, EU 7th Framework Programme (ENV 2007-1), contract no. 212345.


  1. Aubert F, Dissart JC, Lépicier D (2009) Facteurs de localisation de l’emploi résidentiel en France, XLVIème Colloque de l’Association de Science Régionale de Langue Française (ASRDLF), 6–8 juillet, Clermont-Ferrand, France, 27Google Scholar
  2. Ballas D, Clarke GP, Wiemers E (2005) Building a dynamic spatial microsimulation model for Ireland. Popul Space Place 11:157–172Google Scholar
  3. Ballas D, Clarke GP, Wiemers E (2006) Spatial microsimulation for rural policy analysis in Ireland: the implications of CAP reforms for the national spatial strategy. J Rur Stud 22:367–378CrossRefGoogle Scholar
  4. Ballas D et al (2007) Using SimBritain to model the geographical impact of national government policies. Geogr Anal 39:44–77Google Scholar
  5. Baqueiro Espinosa O et al (2011) Two adaptations of a micro-simulation model to study the impacts of policies at the municipality level. In PRIMA European project (ed) Working paper (p 62). Newcastle University, CemagrefGoogle Scholar
  6. Berger T, Schreinemachers P (2006) Creating agents and landscapes for multiagent systems from random sample. Ecol Soc 11(2):19Google Scholar
  7. Birkin M, Clarke M (2011) Spatial microsimulation models: a review and a glimpse into the future. In J Stillwell and M Clarke (eds) Population dynamics and projection methods (Understanding population trends and processes Vol 4, pp 193–208). Springer, NetherlandsGoogle Scholar
  8. Birkin M, Wu B (2012) A review of microsimulation and hybrid agent-based approaches. In AJ Heppenstall et al (eds) Agent-based models of geographical systems (pp 51–68). Springer: NetherlandsGoogle Scholar
  9. Blanc M, Schmitt B (2007) Orientation économique et croissance locale de l’emploi dans les bassins de vie des bourgs et petites villes. Economie et Statistique 402:57–74CrossRefGoogle Scholar
  10. Bousquet F, Le Page C (2004) Multi-agent simulations and ecosystem management: a review. Ecol Model 176:313–332CrossRefGoogle Scholar
  11. Bozon M, Héran F (1987) La découverte du conjoint: I. evolution et morphologie des scènes de rencontre. Population 42(6):943–985CrossRefGoogle Scholar
  12. Bozon M, Héran F (1988) La découverte du conjoint: II. Les scènes de rencontre dans l’espace social. Population 43(1):121–150CrossRefGoogle Scholar
  13. Brown DG, Robinson DT (2006) effects of heterogeneity in residential preferences on an agent-based model of urban sprawl. Ecol Soc 11(1):46Google Scholar
  14. Brown DG, Aspinal R, Bennett DA (2006) Landscape models and explanation in landscape ecology—a space for generative landscape science. Prof Geo 58(4):369–382CrossRefGoogle Scholar
  15. Champetier Y (2000) The (re)population of rural areas. Leader Magazine 23(Springer Special Issue)Google Scholar
  16. Coulombel N (2010) Residential Choice and Household Behavior: State of the Art, (Working Paper 2.2a: Ecole Normale Supérieure de Cachan), 69.Google Scholar
  17. Davezies L (2009) L’économie locale “résidentielle”. Géographie économie société 11(1):47–53CrossRefGoogle Scholar
  18. Deffuant G. et al (2001), Rapport final du projet FAIR 3 2092 IMAGES: Modélisation de la diffusion de l’adoption de mesures agri-environnementales par les agriculteurs (1997–2001).Google Scholar
  19. Deffuant G et al (2002) How can extremism prevail? A study based on the relative agreement interaction model. JASSS 5(4):4Google Scholar
  20. Deffuant G, Huet S, Amblard F (2005) An individual-based model of innovation diffusion mixing social value and individual payoff dynamics. Am J Soc 110(4):1041–1069Google Scholar
  21. Deffuant G, Skerrat S, Huet S (2008) An agent based model of agri-environmental measure diffusion: what for? In A Lopez Paredes, C Hernandez Iglesias (eds) Agent based modelling in natural resource management (pp 55–73). INSISOC, ValladolidGoogle Scholar
  22. Dubuc S (2004) Dynamisme rural: l’effet des petites villes. L’Espace Géographique 1:69–85Google Scholar
  23. Felemou M (2011) Analyse de données de flux de navetteurs. Extractions de modèles (p 31 Rapport de stage de 1ère année de Master Statistiques et Traitement de Données). Cemagref, AubièreGoogle Scholar
  24. Fernandez LE et al (2005) Characterizing location preferences in an exurban population: implications for agent-based modeling. Plan Des 32(6):21Google Scholar
  25. Fontaine C, Rounsevell M (2009) An agent-based approach to model future residential pressure on a regional landscape. Landscape Ecol 24(9):1237–54CrossRefGoogle Scholar
  26. Gargiulo F et al (2010) An iterative approach for generating statistically realistic populations of households. PLoS One 5(1):9CrossRefGoogle Scholar
  27. Gargiulo F et al (2011) Commuting network model: going to the bulk. JASSS 15(2):6Google Scholar
  28. Gilbert N, Troitzsch KG (2005) Simulation for the social scientist. Open University Press, MaidenheadGoogle Scholar
  29. Givord P (2003) Une nouvelle enquête Emploi. Economie et Statistiques 362:59–66Google Scholar
  30. Goux D (2003) Une histoire de l’enquête Emploi. Economie et Statistiques 362:41–57CrossRefGoogle Scholar
  31. Grimm V et al (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198:115–126Google Scholar
  32. Grimm V et al (2010) The ODD protocol: a review and first update. Ecol Model 221:2760–2768CrossRefGoogle Scholar
  33. Holme E et al (2004) The SVERIGE spatial microsimulation model: content, validation and example applications (p 55). Spatial Modelling Centre, SwedenGoogle Scholar
  34. Huet S et al (2011) Micro-simulation model of municipality network in the Auvergne case study. In PRIMA (ed) Working paper (p 63). IRSTEA, AubièreGoogle Scholar
  35. INSEE division Redistribution et Politiques Sociales (1999) Le modèle de simulation dynamique DESTINIE. Série des documents de travail de la Direction des Etudes et Synthèses Economiques 124:1–49Google Scholar
  36. Johansson M, Rauhut D (2007) The spatial effects of demographic trends and migration. E. P. 1.1.4., European Observation Network for Territorial Development and Cohesion (ESPON):65Google Scholar
  37. Lenormand M, Huet S et al (2012a) Deriving the number of jobs in proximity services from the number of inhabitants in French rural municipalities. PLoS One 7(7):13Google Scholar
  38. Lenormand M, Huet S et al (2012b) A universal model of commuting networks. PLoS One 7(10)Google Scholar
  39. Moeckel R et al (2003) Microsimulation of land use. Int J Urb Sci 71(1):14–31Google Scholar
  40. Morand E et al (2010) Demographic modelling: the state of the art (FP7–244557 Project SustainCity, p 39). INED: ParisGoogle Scholar
  41. Müller K, Axhausen KW (2011) Population synthesis for microsimulation: State of the art, 90th Annual Meeting of the Transportation Research Board (Washington D.C.)Google Scholar
  42. Orcutt GH (1957) A new type of socio economic system. Rev Econ Statist 58:773–97Google Scholar
  43. Parker Dawn C et al (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93(2):314–37CrossRefGoogle Scholar
  44. Perrier-Cornet Ph (2001) La dynamique des espaces ruraux dans la société française: un cadre d’analyse. Territoires 2020, 3 (Etudes et prospectives—Data), 61–74Google Scholar
  45. Polhill JG et al (2008) Using the ODD protocol for describing three agent-based social simulation models of land-use change. JASSS 11 (2.3):30Google Scholar
  46. Rindfuss R et al (2004) Developing a science of land change: Challenges and methodological issues. PNAS 101(39):13976–81CrossRefGoogle Scholar
  47. Soumagne J (2003) Les services en milieu rural, enjeu d’aménagement territorial. Revista da Faculdade de Letras—Geografia I série, XIX.Google Scholar
  48. Turci L et al (2010) Provisional demographic outline (FP7–244557 Project SustainCity, p 24). INED, ParisGoogle Scholar
  49. Ullman E, Dacey M (1960) The minimum requirement approach to the urban economic base. Pap Proc Reg Sci Ass 6(192):175–194Google Scholar
  50. Verburg PH et al (2002) Modelling the spatial dynamics of regional land use: the clue-s model. Environ Manage 30(3):391–405CrossRefGoogle Scholar
  51. Verburg PH et al (2004) Land use modelling: current practice and research priorities. GeoJournal 61:309–324CrossRefGoogle Scholar
  52. Verburg PH et al (2006) Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agri Eco Environ 114:39–56CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. Huet
    • 1
  • M. Lenormand
    • 1
  • G. Deffuant
    • 1
  • F. Gargiulo
    • 1
  1. 1.Laboratoire d’Ingénierie des Systèmes ComplexesIrsteaAubiereFrance

Personalised recommendations