Advertisement

Cytokines in the Balance of Protection and Pathology During Mycobacterial Infections

  • Egídio Torrado
  • Andrea M. CooperEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 783)

Abstract

The outcome of natural infections with pathogenic mycobacteria can range from early asymptomatic clearance through latent infection to clinical disease. Different host and pathogen-specific factors have been implicated in determining the outcome of these infections; however, it is clear that the interaction of mycobacteria with the innate and acquired components of the immune system plays a central role. Specifically, the recognition of mycobacterial components by innate immune cells through different pathogen recognition receptors (PPRs) induces a cytokine response that can promote early control of the infection. In fact, in the majority of individuals that come into contact with mycobacteria, this response is enough to control the infection. Among PRRs, Toll-like receptors (TLRs), Nucleotide Oligomerization Domain (NOD)-like receptors, and C-type lectins have all been implicated in recognition of mycobacteria and in the initiation of the cytokine response. Defining the mechanisms by which distinct mycobacterial components and their receptors stimulate the immune response is an area of intense research.

Keywords

Cytokines Innate cytokine response Mycobacterium tuberculosis IFN-producing T cells Mycobacterial infection T cell response Macrophages Cell death Granulocytes Tumor necrosis factor Eicosanoids CD4 T cells Cell survival Phagocytes Pulmonary fibrosis 

References

  1. 1.
    Stumhofer J, Tait E, Quinn Wr, Hosken N, Spudy B, Goenka R et al (2010) A role for IL-27p28 as an antagonist of gp130-mediated signaling. Nat Immunol 11:1119–1126PubMedCrossRefGoogle Scholar
  2. 2.
    Collison L, Workman C, Kuo T, Boyd K, Wang Y, Vignali K et al (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569PubMedCrossRefGoogle Scholar
  3. 3.
    Cooper AM (2009) Cell mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422PubMedCrossRefGoogle Scholar
  4. 4.
    Cooper A (2009) T cells in mycobacterial infection and disease. Curr Opin Immunol 21:378–384PubMedCrossRefGoogle Scholar
  5. 5.
    Cooper AM, Khader SA (2008) The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev 226:191–204PubMedCrossRefGoogle Scholar
  6. 6.
    Wolf A, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K et al (2008) Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med 205:105–115PubMedCrossRefGoogle Scholar
  7. 7.
    Reiley W, Calayag M, Wittmer S, Huntington J, Pearl J, Fountain J et al (2008) ESAT-6-specific CD4 T cell responses to aerosol Mycobacterium tuberculosis infection are initiated in mediastinal lymph nodes. Proc Natl Acad Sci U S A 105:10961–10966PubMedCrossRefGoogle Scholar
  8. 8.
    Gallegos A, Pamer E, Glickman M (2008) Delayed protection by ESAT-6-specific effector CD4+ T cells after airborne M. tuberculosis infection. J Exp Med 205:2359–2368PubMedCrossRefGoogle Scholar
  9. 9.
    Wolf AJ, Linas B, Trevejo-Nunez GJ, Kincaid E, Tamura T, Takatsu K et al (2007) Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol 179:2509–2519PubMedGoogle Scholar
  10. 10.
    Cooper A, Solache A, Khader S (2007) Interleukin-12 and tuberculosis: an old story revisited. Curr Opin Immunol 19:441–447PubMedCrossRefGoogle Scholar
  11. 11.
    Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, Feinberg J et al (2006) Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol 18:347–361PubMedCrossRefGoogle Scholar
  12. 12.
    Cooper AM, Kipnis A, Turner J, Magram J, Ferrante J, Orme IM (2002) Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12 p40 subunit is present. J Immunol 168:1322–1327PubMedGoogle Scholar
  13. 13.
    Khader S, Pearl J, Sakamoto K, Gilmartin L, Bell G, Jelley-Gibbs D et al (2005) IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-g responses if IL-12p70 is available. J Immunol 175:788–795PubMedGoogle Scholar
  14. 14.
    Torrado E, Cooper AM (2010) IL-17 and Th17 cells in tuberculosis. Cytokine Growth Factor Rev 21:455–462PubMedCrossRefGoogle Scholar
  15. 15.
    Wozniak T, Ryan A, Britton W (2006) Interleukin-23 restores immunity to Mycobacterium tuberculosis infection in IL-12p40-deficient mice and is not required for the development of IL-17-secreting T cell responses. J Immunol 177:8684–8692PubMedGoogle Scholar
  16. 16.
    Khader S, Bell G, Pearl J, Fountain J, Rangel-Moreno J, Cilley G et al (2007) IL-23 and IL-17 in establishment of protective pulmonary CD4+ T cell responses upon vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8:369–377PubMedCrossRefGoogle Scholar
  17. 17.
    Pflanz S, Timans J, Cheung J, Rosales R, Kanzler H, Gilbert J et al (2002) IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16:779–790PubMedCrossRefGoogle Scholar
  18. 18.
    Pearl JE, Shabaana AK, Solache A, Gilmartin L, Ghilardi N, deSauvage F et al (2004) IL-27 signaling compromises control of bacterial growth in mycobacteria-infected mice. J Immunol 173:7490–7496PubMedGoogle Scholar
  19. 19.
    Holscher C, Holscher A, Ruckerl D, Yoshimoto T, Yoshida H, Mak T et al (2005) The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. J Immunol 174:3534–3544PubMedGoogle Scholar
  20. 20.
    Villarino A, Hibbert L, Lieberman L, Wilson E, Mak T, Yoshida H et al (2003) The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. Immunity 19:645–655PubMedCrossRefGoogle Scholar
  21. 21.
    Hamano S, Himeno K, Miyazaki Y, Ishii K, Yamanaka A, Takeda A et al (2003) WSX-1 is required for resistance to Trypanosoma cruzi infection by regulation of proinflammatory cytokine production. Immunity 19:641–644CrossRefGoogle Scholar
  22. 22.
    Batten M, Ghilardi N (2007) The biology and therapeutic potential of interleukin 27. J Mol Med 85:661–677PubMedCrossRefGoogle Scholar
  23. 23.
    Fitzgerald DC, Zhang GX, El-Behi M, Fonseca-Kelly Z, Li H, Yu S et al (2007) Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat Immunol 8:1372–1379PubMedCrossRefGoogle Scholar
  24. 24.
    Stumhofer J, Silver J, Laurence A, Porrett P, Harris T, Turka L et al (2007) Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 8:1363–1371PubMedCrossRefGoogle Scholar
  25. 25.
    Cruz A, Fraga A, Fountain J, Rangel-Moreno J, Torrado E, Saraiva M et al (2010) Pathological role of Interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis. J Exp Med 207:1609–1616PubMedCrossRefGoogle Scholar
  26. 26.
    Desvignes L, Ernst JD (2009) Interferon-g-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity 31:974–985PubMedCrossRefGoogle Scholar
  27. 27.
    Cruz A, Khader S, Torrado E, Fraga A, Pearl J, Pedrosa J et al (2006) Cutting edge: IFN-g regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection. J Immunol 177:1416–1420PubMedGoogle Scholar
  28. 28.
    Wieland CW, van der Windt GJ, Florquin S, McKenzie AN, van der Poll T (2009) ST2 deficient mice display a normal host defense against pulmonary infection with Mycobacterium tuberculosis. Microbes Infect 11:524–530PubMedCrossRefGoogle Scholar
  29. 29.
    Scanga C, Bafica A, Feng C, Cheever A, Hieny S, Sher A (2004) MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect Immun 72:2400–2404PubMedCrossRefGoogle Scholar
  30. 30.
    Fremond C, Yeremeev V, Nicolle D, Jacobs M, Quesniaux V, Fatal RB (2004) Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Investig 114:1790–1799PubMedGoogle Scholar
  31. 31.
    Mayer-Barber K, Barber D, Shenderov K, White S, Wilson MS, Cheever A et al (2010) Cutting Edge: Caspase-1 independent IL-1b production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol 184:3326–3330PubMedCrossRefGoogle Scholar
  32. 32.
    Mayer-Barber KD, Andrade BB, Barber DL, Hieny S, Feng CG, Caspar P et al (2011) Innate and adaptive interferons suppress IL-1a and IL-1b production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35:1023–1034PubMedCrossRefGoogle Scholar
  33. 33.
    Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: Intracellular regulators of infection and inflammation. Nat Rev Immunol 7:31–40PubMedCrossRefGoogle Scholar
  34. 34.
    Mishra BB, Moura-Alves P, Sonawane A, Hacohen N, Griffiths G, Moita LF et al (2010) Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol 12:1046–1063PubMedCrossRefGoogle Scholar
  35. 35.
    McElvania Tekippe E, Allen IC, Hulseberg PD, Sullivan JT, McCann JR, Sandor M et al (2010) Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. PLoS ONE 5:e12320PubMedCrossRefGoogle Scholar
  36. 36.
    Walter K, Holscher C, Tschopp J, Ehlers S (2010) NALP3 is not necessary for early protection against experimental tuberculosis. Immunobiology 215:804–811PubMedCrossRefGoogle Scholar
  37. 37.
    Koo IC, Wang C, Raghavan S, Morisaki JH, Cox JS, Brown EJ (2008) ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell Microbiol 10:1866–1878PubMedCrossRefGoogle Scholar
  38. 38.
    Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M, Boekhout T et al (2012) Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1b via a noncanonical caspase-8 inflammasome. Nat Immunol 13:246–254PubMedCrossRefGoogle Scholar
  39. 39.
    Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550PubMedCrossRefGoogle Scholar
  40. 40.
    van de Veerdonk F, Teirlinck A, Kleinnijenhui J, Jan Kullberg B, van Creval R, van der Meer J et al (2010) Mycobacterium tuberculosis induces IL-17A responses through TLR4 and dectin-1 and is critically dependent on endogenous IL-1. J Leukoc Biol 88:227–232PubMedCrossRefGoogle Scholar
  41. 41.
    Aujla S, Dubin P, Kolls J (2007) Th17 cells and mucosal host defense. Semin Immunol 19:377–382PubMedCrossRefGoogle Scholar
  42. 42.
    Hurgin V, Novick D, Werman A, Dinarello CA, Rubinstein M (2007) Antiviral and immunoregulatory activities of IFN-g depend on constitutively expressed IL-1a. Proc Natl Acad Sci U S A 104:5044–5049PubMedCrossRefGoogle Scholar
  43. 43.
    Bellamy R, Ruwende C, Corrah T, McAdam KPWJ, Whittle HC (1998) A.V.S.H. Assessment of the Interleukin-1 gene cluster and other candidate gene polymorphisms in host susceptibility to tuberculosis. Tuberc Lung Dis 79:83–89CrossRefGoogle Scholar
  44. 44.
    Wilkinson RJ, Patel P, Llewelyn M, Hirsch CS, Pasvol G, Snounou G et al (1999) Influence of polymorphism in the genes for the interleukin (IL)-1 receptor antagonist and IL-1b on tuberculosis. J Exp Med 189:1863–1874PubMedCrossRefGoogle Scholar
  45. 45.
    Okamura H, Tsutsui H, Komatsu T, Yatsudo M, Hakura A, Tanimoto T et al (1995) Cloning of a new cytokine that induces IFN-g production by T cells. Nature 378:88–91PubMedCrossRefGoogle Scholar
  46. 46.
    Sugawara I, Yamada H, Kaneko H, Mizuno S, Takeda K, Akira S (1999) Role of interleukin-18 (IL-18) in mycobacterial infection in IL-18-gene-disrupted mice. Infect Immun 67:2585–2589PubMedGoogle Scholar
  47. 47.
    Kinjo Y, Kawakami K, Uezu K, Yara S, Miyagi K, Koguchi Y et al (2002) Contribution of IL-18 to Th1 response and host defense against infection by Mycobacterium tuberculosis. J Immunol 169:323–329PubMedGoogle Scholar
  48. 48.
    Schneider BE, Korbel D, Hagens K, Koch M, Raupach B, Enders J et al (2010) A role for IL-18 in protective immunity against Mycobacterium tuberculosis. Eur J Immunol 40:396–405PubMedCrossRefGoogle Scholar
  49. 49.
    Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Eng J Med 345:1098–1104CrossRefGoogle Scholar
  50. 50.
    Roach D, Bean A, Demangel C, France M, Briscoe H, Britton W (2002) TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol 168:4620–4627PubMedGoogle Scholar
  51. 51.
    Saunders B, Tran S, Ruuls S, Sedgwick J, Briscoe H, Britton W (2005) Transmembrane TNF is sufficient to initiate cell migration and granuloma formation and provide acute, but not long-term, control of Mycobacterium tuberculosis infection. J Immunol 174:4852–4859PubMedGoogle Scholar
  52. 52.
    Flórido M, Appelberg R (2007) Characterization of the deregulated immune activation occurring at late stages of mycobacterial infection in TNF-deficient mice. J Immunol 179:7702–7708PubMedGoogle Scholar
  53. 53.
    Tobin DM, Vary JC Jr, Ray JP, Walsh GS, Dunstan SJ, Bang ND et al (2010) The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140:717–730PubMedCrossRefGoogle Scholar
  54. 54.
    Torrado E, Cooper AM (2011) What do we really know about how CD4 T cells control Mycobacterium tuberculosis? PLoS Pathog 7:e1002196PubMedCrossRefGoogle Scholar
  55. 55.
    Gallegos AM, van Heijst JWJ, Samstein M, Su X, Pamer EG, Glickman MS (2011) A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. PLoS Pathog 7:e1002052PubMedCrossRefGoogle Scholar
  56. 56.
    Bold TD, Banaei N, Wolf AJ, Ernst JD (2011) Suboptimal activation of antigen-specific CD4+  effector cells enables persistence of M. tuberculosis in vivo. PLoS Pathog 7:e1002063PubMedCrossRefGoogle Scholar
  57. 57.
    Egen JG, Rothfuchs AG, Feng CG, Horwitz MA, Sher A, Germain RN (2011) Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34:807–819PubMedCrossRefGoogle Scholar
  58. 58.
    Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178:2243–2247PubMedCrossRefGoogle Scholar
  59. 59.
    Nandi B, Behar SM (2011) Regulation of neutrophils by interferon-g limits lung inflammation during tuberculosis infection. J Exp Med 208:2251–2262PubMedCrossRefGoogle Scholar
  60. 60.
    Cooper AM, Adams LB, Dalton DK, Appelberg R, Ehlers S (2002) IFN-g and NO in mycobacterial disease: new jobs for old hands. Trends Microbiol 10:221–226PubMedCrossRefGoogle Scholar
  61. 61.
    Florido M, Pearl J, Solache A, Borges M, Haynes L, Cooper A et al (2005) Gamma interferon-induced T-cell loss in virulent Mycobacterium avium infection. Infect Immun 73:3577–3586PubMedCrossRefGoogle Scholar
  62. 62.
    Antonelli LR, Gigliotti Rothfuchs A, Goncalves R, Roffe E, Cheever AW, Bafica A et al (2010) Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 120:1674–1682PubMedCrossRefGoogle Scholar
  63. 63.
    Manca C, Tsenova L, Bergtold A, Freeman S, Tovey M, Musser JM et al (2001) Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha/beta. Proc Natl Acad Sci U S A 98:5752–5757PubMedCrossRefGoogle Scholar
  64. 64.
    Stanley SA, Johndrow JE, Manzanillo P, Cox JS (2007) The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178:3143–3152PubMedGoogle Scholar
  65. 65.
    O’Connell RM, Vaidya SA, Perry AK, Saha SK, Dempsey PW, Cheng G (2005) Immune activation of type I IFNs by Listeria monocytogenes occurs independently of TLR4, TLR2, and receptor interacting protein 2 but involves TNFR-associated NF kappa B kinase-binding kinase 1. J Immunol 174:1602–1607PubMedGoogle Scholar
  66. 66.
    Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:973–977PubMedCrossRefGoogle Scholar
  67. 67.
    Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P et al (2001) Requirement of Interleukin-17 receptor signalling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recriutment, and host defense. J Exp Med 194:519–527PubMedCrossRefGoogle Scholar
  68. 68.
    Ye P, Garvey PB, Zhang P, Nelson S, Bagby G, Summer WR et al (2001) Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am J Respir Crit Care Med 25:335–340Google Scholar
  69. 69.
    Happel K, Dubin P, Zheng M, Ghilardi N, Lockhart C, Quinton L et al (2005) Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med 202:761–769PubMedCrossRefGoogle Scholar
  70. 70.
    Hamada S, Umemura M, Shiono T, Tanaka K, Yahagi A, Begum MD et al (2008) IL-17A produced by gammadelta T cells plays a critical role in innate immunity against Listeria monocytogenes infection in the liver. J Immunol 181:3456–3463PubMedGoogle Scholar
  71. 71.
    Okamoto Yoshida Y, Umemura M, Yahagi A, O’Brien R, Ikuta K, Kishihara K et al (2010) Essential role of IL-17A in the formation of a mycobacterial Infection-induced granuloma in the lung. J Immunol 184(8):4414–4422PubMedCrossRefGoogle Scholar
  72. 72.
    Blomgran R, Desvignes L, Briken V, Ernst JD (2012) Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe 11:81–90PubMedCrossRefGoogle Scholar
  73. 73.
    Seiler P, Aichele P, Bandermann S, Hauser A, Lu B, Gerard N et al (2003) Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. Eur J Immunol 33:2676–2686PubMedCrossRefGoogle Scholar
  74. 74.
    Silva MT (2010) When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J Leukoc Biol 87:93–106PubMedCrossRefGoogle Scholar
  75. 75.
    Khader SA, Guglani L, Rangel-Moreno J, Gopal R, Fallert Junecko BA, Fountain JJ et al (2011) IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung. J Immunol 187:5402–5407PubMedCrossRefGoogle Scholar
  76. 76.
    Wilson MS, Feng CG, Barber DL, Yarovinsky F, Cheever AW, Sher A et al (2010) Redundant and pathogenic roles for IL-22 in mycobacterial, protozoan, and helminth infections. J Immunol 184:4378–4390PubMedCrossRefGoogle Scholar
  77. 77.
    Liang S, Tan X, Luxenberg D, Karim R, Dunussi-Joannopoulos K, Collins M et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279PubMedCrossRefGoogle Scholar
  78. 78.
    Scriba TJ, Kalsdorf B, Abrahams DA, Isaacs F, Hofmeister J, Black G et al (2008) Distinct, specific IL-17- and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response. J Immunol 180:1962–1970PubMedGoogle Scholar
  79. 79.
    Turner J, Gonzalez-Juarrero M, Ellis D, Basaraba R, Kipnis A, Orme I et al (2002) In vivo IL-10 production reactivates chronic pulmonary tuberculosis in C57BL/6 mice. J Immunol 169:6343–6351PubMedGoogle Scholar
  80. 80.
    Beamer G, Flaherty D, Assogba B, Stromberg P, Gonzalez-Juarrero M, de Waal Malefyt R et al (2008) Interleukin-10 promotes Mycobacterium tuberculosis disease progression in CBA/J mice. J Immunol 181:5545–5550PubMedGoogle Scholar
  81. 81.
    O’Leary S, O’Sullivan M, Keane J (2010) IL-10 blocks phagosome maturation in Mycobacterium tuberculosis-infected human macrophages. Am J Respir Cell Mol Biol (epub ahead of print)Google Scholar
  82. 82.
    Redford P, Boonstra A, Read S, Pitt J, Graham C, Stavropoulos E et al (2010) Enhanced protection to Mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lung. Eur J Immunol 40(8):2200–2210PubMedCrossRefGoogle Scholar
  83. 83.
    Rook GA, Hernandez-Pando R, Dheda K, Teng Seah G (2004) IL-4 in tuberculosis: implications for vaccine design. Trends Immunol 25:483–488PubMedCrossRefGoogle Scholar
  84. 84.
    Potian JA, Rafi W, Bhatt K, McBride A, Gause WC, Salgame P (2011) Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. J Exp Med 208:1863–1874PubMedCrossRefGoogle Scholar
  85. 85.
    El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW, Henao-Tamayo M et al (2008) Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 9:1399–1406PubMedCrossRefGoogle Scholar
  86. 86.
    Schreiber T, Ehlers S, Heitmann L, Rausch A, Mages J, Murray PJ et al (2009) Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity. J Immunol 183:1301–1312PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Trudeau Institute, IncSaranac LakeUSA

Personalised recommendations