Skip to main content

Evolution of Mycobacterium tuberculosis

  • Chapter
  • First Online:
The New Paradigm of Immunity to Tuberculosis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 783))

Abstract

Genomic studies have provided a refined understanding of the genetic diversity within the Mycobacterium genus, and more specifically within Mycobacterium tuberculosis. These results have informed a new perspective on the macro- and micro-evolution of the tubercle bacillus. In the first step, a M. kansasii-like opportunistic pathogen acquired new genes, through horizontal gene transfer, that enabled it to better exploit an intracellular niche and ultimately evolve into a professional pathogen. In the second step, different subspecies and strains of the M. tuberculosis complex emerged through mutation and deletion of unnecessary DNA. Understanding the differences between M. tuberculosis and related less pathogenic mycobacteria is expected to reveal key bacterial virulence mechanisms and provide opportunities to understand host resistance to mycobacterial infection. Understanding differences within the M. tuberculosis complex and the evolutionary forces shaping these differences is important for investigating the basis of its success as both a symbiont and a pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TB:

Tuberculosis

BCG:

Bacille de Calmette et Guérin

NTM:

Non-tuberculous mycobacteria

RD:

Region of difference, representing a locus of the bacterial genome that is absent from a closely related species, as in RD1, RD2, etc.

SNP:

Single nucleotide polymorphism

References

  1. Cole ST et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  2. Hershberg R et al (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6:e311

    Article  PubMed  Google Scholar 

  3. Veyrier FJ, Dufort A, Behr MA (2011) The rise and fall of the Mycobacterium tuberculosis genome. Trends Microbiol 19:156–161

    Article  PubMed  CAS  Google Scholar 

  4. Veyrier F, Pletzer D, Turenne C, Behr MA (2009) Phylogenetic detection of horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis. BMC Evol Biol 9:196

    Article  PubMed  Google Scholar 

  5. Casanova JL, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620

    Article  PubMed  CAS  Google Scholar 

  6. Alexander DC, Turenne CY, Behr MA (2008) Insertion and deletion events that define the pathogen mycobacterium avium subspecies paratuberculosis. J Bacteriol 191:1018−1025

    Article  PubMed  Google Scholar 

  7. Becq J et al (2007) Contribution of horizontally acquired genomic islands to the evolution of the tubercle bacilli. Mol Biol Evol 24:1861–1871

    Article  PubMed  CAS  Google Scholar 

  8. Rosas-Magallanes V et al (2006) Horizontal transfer of a virulence operon to the ancestor of Mycobacterium tuberculosis. Mol Biol Evol 23:1129–1135

    Article  PubMed  CAS  Google Scholar 

  9. Behr MA et al (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523

    Article  PubMed  CAS  Google Scholar 

  10. Gordon SV et al (1999) Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32:643–655

    Article  PubMed  CAS  Google Scholar 

  11. Parsons LM et al (2002) Rapid and simple approach for identification of Mycobacterium tuberculosis complex isolates by PCR-based genomic deletion analysis. J Clin Microbiol 40:2339–2345

    Article  PubMed  CAS  Google Scholar 

  12. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282

    PubMed  CAS  Google Scholar 

  13. Supply P et al (2003) Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol Microbiol 47:529–538

    Article  PubMed  CAS  Google Scholar 

  14. Brosch R et al (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99:3684–3689

    Article  PubMed  CAS  Google Scholar 

  15. Mostowy S, Cousins D, Brinkman J, Aranaz A, Behr MA (2002) Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. J Infect Dis 186:74–80

    Article  PubMed  CAS  Google Scholar 

  16. Smith NH, Gordon SV, Rua-Domenech R, Clifton-Hadley RS, Hewinson RG (2006) Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nature Rev Microbiol 4:670–681

    Article  CAS  Google Scholar 

  17. Mostowy S et al (2005) Revisiting the evolution of Mycobacterium bovis. J Bacteriol 187:6386–6395

    Article  PubMed  CAS  Google Scholar 

  18. Mostowy S, Cousins D, Behr MA (2004) Genomic interrogation of the dassie bacillus reveals it as a unique RD1 mutant within the Mycobacterium tuberculosis complex. J Bacteriol 186:104–109

    Article  PubMed  CAS  Google Scholar 

  19. Nguyen D et al (2004) Genomic characterization of an endemic Mycobacterium tuberculosis strain: evolutionary and epidemiologic implications. J Clin Microbiol 42:2573–2580

    Article  PubMed  CAS  Google Scholar 

  20. Tsolaki AG et al (2005) Genomic deletions classify the Beijing/W strains as a distinct genetic lineage of Mycobacterium tuberculosis. J Clin Microbiol 43:3185–3191

    Article  PubMed  CAS  Google Scholar 

  21. Gagneux S et al (2006) Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103:2869–2873

    Article  PubMed  CAS  Google Scholar 

  22. Reed MB et al (2009) Major Mycobacterium tuberculosis lineages associate with patient country of origin. J Clin Microbiol 47:1119–1128

    Article  PubMed  CAS  Google Scholar 

  23. Comas I et al (2010) Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42:498–503

    Article  PubMed  CAS  Google Scholar 

  24. Hershberg R et al (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6:e311

    Article  PubMed  Google Scholar 

  25. Donoghue HD et al (2004) Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect Dis 4:584–592

    Article  PubMed  CAS  Google Scholar 

  26. Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D (2002) Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis 8:843–849

    Article  PubMed  Google Scholar 

  27. Albanna AS et al (2011) Reduced transmissibility of East African Indian strains of Mycobacterium tuberculosis. PLoS One 6:e25075

    Article  PubMed  CAS  Google Scholar 

  28. Fenner L et al (2012) Mycobacterium tuberculosis transmission in a country with low tuberculosis incidence: role of immigration and HIV infection. J Clin Microbiol 50:388–395

    Article  PubMed  Google Scholar 

  29. Comas I et al (2010) Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42:498–503

    Article  PubMed  CAS  Google Scholar 

  30. Corbett EL et al (2003) The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163:1009–1021

    Article  PubMed  Google Scholar 

  31. Said-Salim B, Mostowy S, Kristof AS, Behr MA (2006) Mutations in Mycobacterium tuberculosis Rv0444c, the gene encoding anti-SigK, explain high level expression of MPB70 and MPB83 in Mycobacterium bovis. Mol Microbiol 62:1251–1263

    Article  PubMed  CAS  Google Scholar 

  32. Aitken ML et al (2012) Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med 185:231–232

    Article  PubMed  CAS  Google Scholar 

  33. Evans JT et al (2007) Cluster of human tuberculosis caused by Mycobacterium bovis: evidence for person-to-person transmission in the UK. Lancet 369:1270–1276

    Article  PubMed  Google Scholar 

  34. Niemann S et al (2009) Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints. PLoS One 4:e7407

    Article  PubMed  Google Scholar 

  35. Gagneux S, Small PM (2007) Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7:328–337

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

MB is supported by a William Dawson Scholar Award of McGill University and a Chercheur Boursier National Award from the Fonds de la Recherche en Sante du Quebec. Work in his laboratory is supported by the Canadian Institutes for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel A. Behr .

Editor information

Editors and Affiliations

Glossary

Mycobacterium tuberculosis complex: A bacterial species that comprises M. tuberculosis sensu stricto

M. bovis and other related agents of tuberculosis in their respective mammalian hosts

Bacille de Calmette et Guérin (BCG) vaccine: A family of attenuated strains of M. bovis

originally derived by serial passage of virulent M. bovis in the laboratory between 1908 and 1921. Named for the scientists who developed this vaccine

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Behr, M.A. (2013). Evolution of Mycobacterium tuberculosis . In: Divangahi, M. (eds) The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, vol 783. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6111-1_4

Download citation

Publish with us

Policies and ethics