Advertisement

Host–Pathogen Specificity in Tuberculosis

  • Tania Di Pietrantonio
  • Erwin SchurrEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 783)

Abstract

The host response to mycobacterial infection including tuberculosis depends on genetically controlled host and bacterial factors and their interaction. A largely unknown aspect of this interaction is whether disease results from an additive and independent effect of host and pathogen or from specific host–pathogen combinations. The preferential association of specific mycobacterial strains with specific ethnic groups provided tentative evidence in favor of host–pathogen specificity in tuberculosis and is consistent with the hypothesis of host–mycobacterial co-adaptation. Substantial evidence for specificity has now been provided by animal models and human case–control association studies. These studies indicate that differences in the host response to infection are at least in part due to specific combinations of host genetic factors and genetic and phenotypic characteristics of the infecting mycobacterial strain.

Keywords

Mycobacterium tuberculosis Host–pathogen specificity BCG infection ANOVA RC strains Chemokine and chemokine-related genes Toll-like receptors Pathogen-associated molecular patterns Meningeal tuberculosis Phagosome maturation Autophagy Mannose-binding lectin (MBL) 

References

  1. 1.
    Rieder HL (1999) Epidemiologic basis of tuberculosis control. International Union Against Tuberculosis and Lung Disease, Paris, p 166Google Scholar
  2. 2.
    Stead WW (1992) Genetics and resistance to tuberculosis. Could resistance be enhanced by genetic engineering? Ann Intern Med 116(11):937–941PubMedGoogle Scholar
  3. 3.
    Stead WW, Senner JW, Reddick WT, Lofgren JP (1990) Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med 322(7):422–427PubMedCrossRefGoogle Scholar
  4. 4.
    Comstock GW (1978) Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 117(4):621–624PubMedGoogle Scholar
  5. 5.
    Kallman FJ, Reisner D (1943) Twin studies on the significance of genetic factors in tuberculosis. Am Rev Tuberc 47:549–574Google Scholar
  6. 6.
    Boisson-Dupuis S, El Baghdadi J, Parvaneh N, Bousfiha A, Bustamante J, Feinberg J et al (2011) IL-12Rbeta1 deficiency in two of fifty children with severe tuberculosis from Iran, Morocco, and Turkey. PLoS One 6(4):e18524PubMedCrossRefGoogle Scholar
  7. 7.
    Sologuren I, Boisson-Dupuis S, Pestano J, Vincent QB, Fernandez-Perez L, Chapgier A et al (2011) Partial recessive IFN-gammaR1 deficiency: genetic, immunological and clinical features of 14 patients from 11 kindreds. Hum Mol Genet 20(8):1509–1523PubMedCrossRefGoogle Scholar
  8. 8.
    Mahasirimongkol S, Yanai H, Nishida N, Ridruechai C, Matsushita I, Ohashi J et al (2009) Genome-wide SNP-based linkage analysis of tuberculosis in Thais. Genes Immun 10(1):77–83PubMedCrossRefGoogle Scholar
  9. 9.
    Baghdadi JE, Orlova M, Alter A, Ranque B, Chentoufi M, Lazrak F et al (2006) An autosomal dominant major gene confers predisposition to pulmonary tuberculosis in adults. J Exp Med 203(7):1679–1684PubMedCrossRefGoogle Scholar
  10. 10.
    Stein CM, Zalwango S, Malone LL, Won S, Mayanja-Kizza H, Mugerwa RD et al (2008) Genome scan of M. tuberculosis infection and disease in Ugandans. PLoS ONE 3(12):e4094PubMedCrossRefGoogle Scholar
  11. 11.
    Cooke GS, Campbell SJ, Bennett S, Lienhardt C, McAdam KP, Sirugo G et al (2008) Mapping of a novel susceptibility locus suggests a role for MC3R and CTSZ in human tuberculosis. Am J Respir Crit Care Med 178(2):203–207PubMedCrossRefGoogle Scholar
  12. 12.
    Jamieson SE, Miller EN, Black GF, Peacock CS, Cordell HJ, Howson JM et al (2004) Evidence for a cluster of genes on chromosome 17q11-q21 controlling susceptibility to tuberculosis and leprosy in Brazilians. Genes Immun 5(1):46–57PubMedCrossRefGoogle Scholar
  13. 13.
    Miller EN, Jamieson SE, Joberty C, Fakiola M, Hudson D, Peacock CS et al (2004) Genome-wide scans for leprosy and tuberculosis susceptibility genes in Brazilians. Genes Immun 5(1):63–67PubMedCrossRefGoogle Scholar
  14. 14.
    Bellamy R, Beyers N, McAdam KP, Ruwende C, Gie R, Samaai P et al (2000) Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci USA 97(14):8005–8009PubMedCrossRefGoogle Scholar
  15. 15.
    Mahasirimongkol S, Yanai H, Mushiroda T, Promphittayarat W, Wattanapokayakit S, Phromjai J et al (2012) Genome-wide association studies of tuberculosis in Asians identify distinct at-risk locus for young tuberculosis. J Hum Genet 57(6):363–367PubMedCrossRefGoogle Scholar
  16. 16.
    Thye T, Owusu-Dabo E, Vannberg FO, van Crevel R, Curtis J, Sahiratmadja E et al (2012) Common variants at 11p13 are associated with susceptibility to tuberculosis. Nat Genet 44(3):257–259PubMedCrossRefGoogle Scholar
  17. 17.
    Moller M, de Wit E, Hoal EG (2010) Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunol Med Microbiol 58(1):3–26PubMedCrossRefGoogle Scholar
  18. 18.
    Stein CM (2011) Genetic epidemiology of tuberculosis susceptibility: impact of study design. PLoS Pathog 7(1):e1001189PubMedCrossRefGoogle Scholar
  19. 19.
    Lopez B, Aguilar D, Orozco H, Burger M, Espitia C, Ritacco V et al (2003) A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin Exp Immunol 133(1):30–37PubMedCrossRefGoogle Scholar
  20. 20.
    Manca C, Tsenova L, Barry CE 3rd, Bergtold A, Freeman S, Haslett PA et al (1999) Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J Immunol 162(11):6740–6746PubMedGoogle Scholar
  21. 21.
    Manca C, Tsenova L, Bergtold A, Freeman S, Tovey M, Musser JM et al (2001) Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha/beta. Proc Natl Acad Sci USA 98(10):5752–5757PubMedCrossRefGoogle Scholar
  22. 22.
    Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN et al (2004) A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431(7004):84–87PubMedCrossRefGoogle Scholar
  23. 23.
    Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NT, Thuong NT et al (2008) The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog 4(3):e1000034PubMedCrossRefGoogle Scholar
  24. 24.
    Gagneux S, Small PM (2007) Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7(5):328–337PubMedCrossRefGoogle Scholar
  25. 25.
    Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S et al (2006) Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103(8):2869–2873PubMedCrossRefGoogle Scholar
  26. 26.
    Reed MB, Pichler VK, McIntosh F, Mattia A, Fallow A, Masala S et al (2009) Major Mycobacterium tuberculosis lineages associate with patient country of origin. J Clin Microbiol 47(4):1119–1128PubMedCrossRefGoogle Scholar
  27. 27.
    Wirth T, Hildebrand F, Allix-Beguec C, Wolbeling F, Kubica T, Kremer K et al (2008) Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 4(9):e1000160PubMedCrossRefGoogle Scholar
  28. 28.
    Hirsh AE, Tsolaki AG, DeRiemer K, Feldman MW, Small PM (2004) Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci USA 101(14):4871–4876PubMedCrossRefGoogle Scholar
  29. 29.
    Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S et al (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6(12):e311PubMedCrossRefGoogle Scholar
  30. 30.
    Medina E, North RJ (1996) Evidence inconsistent with a role for the Bcg gene (Nramp1) in resistance of mice to infection with virulent Mycobacterium tuberculosis. J Exp Med 183(3):1045–1051PubMedCrossRefGoogle Scholar
  31. 31.
    Medina E, North RJ (1998) Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype. Immunology 93(2):270–274PubMedCrossRefGoogle Scholar
  32. 32.
    Actor JK, Olsen M, Jagannath C, Hunter RL (1999) Relationship of survival, organism containment, and granuloma formation in acute murine tuberculosis. J Interferon Cytokine Res 19(10):1183–1193PubMedCrossRefGoogle Scholar
  33. 33.
    Jagannath C, Hoffmann H, Sepulveda E, Actor JK, Wetsel RA, Hunter RL (2000) Hypersusceptibility of A/J mice to tuberculosis is in part due to a deficiency of the fifth complement component (C5). Scand J Immunol 52(4):369–379PubMedCrossRefGoogle Scholar
  34. 34.
    Watson VE, Hill LL, Owen-Schaub LB, Davis DW, McConkey DJ, Jagannath C et al (2000) Apoptosis in Mycobacterium tuberculosis infection in mice exhibiting varied immunopathology. J Pathol 190(2):211–220PubMedCrossRefGoogle Scholar
  35. 35.
    Gros P, Skamene E, Forget A (1981) Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J Immunol 127(6):2417–2421PubMedGoogle Scholar
  36. 36.
    Vidal SM, Malo D, Vogan K, Skamene E, Gros P (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73(3):469–485PubMedCrossRefGoogle Scholar
  37. 37.
    Di Pietrantonio T, Correa JA, Orlova M, Behr MA, Schurr E (2011) Joint effects of host genetic background and mycobacterial pathogen on susceptibility to infection. Infect Immun 79(6):2372–2378PubMedCrossRefGoogle Scholar
  38. 38.
    Woolhouse ME, Webster JP, Domingo E, Charlesworth B, Levin BR (2002) Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32(4):569–577PubMedCrossRefGoogle Scholar
  39. 39.
    Kramnik I, Dietrich WF, Demant P, Bloom BR (2000) Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proc Natl Acad Sci USA 97(15):8560–8565PubMedCrossRefGoogle Scholar
  40. 40.
    Lavebratt C, Apt AS, Nikonenko BV, Schalling M, Schurr E (1999) Severity of tuberculosis in mice is linked to distal chromosome 3 and proximal chromosome 9. J Infect Dis 180(1):150–155PubMedCrossRefGoogle Scholar
  41. 41.
    Mitsos LM, Cardon LR, Fortin A, Ryan L, LaCourse R, North RJ et al (2000) Genetic control of susceptibility to infection with Mycobacterium tuberculosis in mice. Genes Immun 1(8):467–477PubMedCrossRefGoogle Scholar
  42. 42.
    Mitsos LM, Cardon LR, Ryan L, LaCourse R, North RJ, Gros P (2003) Susceptibility to tuberculosis: a locus on mouse chromosome 19 (Trl-4) regulates Mycobacterium tuberculosis replication in the lungs. Proc Natl Acad Sci USA 100(11):6610–6615PubMedCrossRefGoogle Scholar
  43. 43.
    Sanchez F, Radaeva TV, Nikonenko BV, Persson AS, Sengul S, Schalling M et al (2003) Multigenic control of disease severity after virulent Mycobacterium tuberculosis infection in mice. Infect Immun 71(1):126–131PubMedCrossRefGoogle Scholar
  44. 44.
    Di Pietrantonio T, Hernandez C, Girard M, Verville A, Orlova M, Belley A et al (2010) Strain-specific differences in the genetic control of two closely related mycobacteria. PLoS Pathog 6(10):e1001169PubMedCrossRefGoogle Scholar
  45. 45.
    McInturff JE, Modlin RL, Kim J (2005) The role of toll-like receptors in the pathogenesis and treatment of dermatological disease. J Invest Dermatol 125(1):1–8PubMedCrossRefGoogle Scholar
  46. 46.
    Tsenova L, Ellison E, Harbacheuski R, Moreira AL, Kurepina N, Reed MB et al (2005) Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J Infect Dis 192(1):98–106PubMedCrossRefGoogle Scholar
  47. 47.
    Constant P, Perez E, Malaga W, Laneelle MA, Saurel O, Daffe M et al (2002) Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J Biol Chem 277(41):38148–38158PubMedCrossRefGoogle Scholar
  48. 48.
    Malo D, Vogan K, Vidal S, Hu J, Cellier M, Schurr E et al (1994) Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics 23(1):51–61PubMedCrossRefGoogle Scholar
  49. 49.
    Hackam DJ, Rotstein OD, Zhang W, Gruenheid S, Gros P, Grinstein S (1998) Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J Exp Med 188(2):351–364PubMedCrossRefGoogle Scholar
  50. 50.
    Gallant CJ, Malik S, Jabado N, Cellier M, Simkin L, Finlay BB et al (2007) Reduced in vitro functional activity of human NRAMP1 (SLC11A1) allele that predisposes to increased risk of pediatric tuberculosis disease. Genes Immun 8(8):691–698PubMedCrossRefGoogle Scholar
  51. 51.
    van Crevel R, Parwati I, Sahiratmadja E, Marzuki S, Ottenhoff TH, Netea MG et al (2009) Infection with Mycobacterium tuberculosis Beijing genotype strains is associated with polymorphisms in SLC11A1/NRAMP1 in Indonesian patients with tuberculosis. J Infect Dis 200(11):1671–1674PubMedCrossRefGoogle Scholar
  52. 52.
    Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5(6):527–549PubMedCrossRefGoogle Scholar
  53. 53.
    Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119(6):753–766PubMedCrossRefGoogle Scholar
  54. 54.
    Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313(5792):1438–1441PubMedCrossRefGoogle Scholar
  55. 55.
    Intemann CD, Thye T, Niemann S, Browne EN, Amanua Chinbuah M, Enimil A et al (2009) Autophagy gene variant IRGM -261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathog 5(9):e1000577Google Scholar
  56. 56.
    Aliberti J, Hieny S, Reis e Sousa C, Serhan CN, Sher A (2002) Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nature Immunol 3(1):76–82Google Scholar
  57. 57.
    Parkinson JF (2006) Lipoxin and synthetic lipoxin analogs: an overview of anti-inflammatory functions and new concepts in immunomodulation. Inflamm Allergy Drug Targets 5(2):91–106PubMedCrossRefGoogle Scholar
  58. 58.
    Hachicha M, Pouliot M, Petasis NA, Serhan CN (1999) Lipoxin (LX)A4 and aspirin-triggered 15-epi-LXA4 inhibit tumor necrosis factor 1alpha-initiated neutrophil responses and trafficking: regulators of a cytokine-chemokine axis. J Exp Med 189(12):1923–1930PubMedCrossRefGoogle Scholar
  59. 59.
    Herb F, Thye T, Niemann S, Browne EN, Chinbuah MA, Gyapong J et al (2008) ALOX5 variants associated with susceptibility to human pulmonary tuberculosis. Hum Mol Genet 17(7):1052–1060PubMedCrossRefGoogle Scholar
  60. 60.
    Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW (2000) Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun 68(2):688–693PubMedCrossRefGoogle Scholar
  61. 61.
    Thye T, Niemann S, Walter K, Homolka S, Intemann CD, Chinbuah MA et al (2011) Variant G57E of mannose binding lectin associated with protection against tuberculosis caused by Mycobacterium africanum but not by M. tuberculosis. PLoS One 6(6):e20908PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.McGill University Health Centre McGill Centre for the Study of Host ResistanceDepartments of Medicine and Human GeneticsMontrealCanada
  2. 2.McGill University Health Centre McGill Centre for the Study of Host ResistanceDepartments of Medicine and Human GeneticsMontrealCanada

Personalised recommendations