Advertisement

CD1d and Natural Killer T Cells in Immunity to Mycobacterium tuberculosis

  • Pooja Arora
  • Erin L. Foster
  • Steven A. PorcelliEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 783)

Abstract

The critical role of peptide antigen-specific T cells in controlling mycobacterial infections is well documented in natural resistance and vaccine-induced immunity against Mycobacterium tuberculosis. However, many other populations of leukocytes contribute to innate and adaptive immunity against mycobacteria. Among these, non-conventional T cells recognizing lipid antigens presented by the CD1 antigen presentation system have attracted particular interest. In this chapter, we review the basic immunobiology and potential antimycobacterial properties of a subset of CD1-restricted T cells that have come to be known as Natural Killer T cells. This group of lipid reactive T cells is notable for its high level of conservation between humans and mice, thus enabling a wide range of highly informative studies in mouse models. As reviewed below, NKT cells appear to have subtle but potentially significant activities in the host response to mycobacteria. Importantly, they also provide a framework for investigations into other types of lipid antigen-specific T cells that may be more abundant in larger mammals such as humans.

Keywords

Mycobacterium tuberculosis Natural killer T (NKT) cells Mammalian major histocompatibility complex (MHC) class I proteins CD1D1 genes T cell antigen receptors Cortical thymocytes CD1d expression Macrophages Apolipoprotein E (ApoE) Saposin family (saposins A–D) Microsomal triglyceride transfer protein (MTP) Niemann-pick type C2 (NPC2) protein Invariant NKT (iNKT) cells Glycolipids Mycobacterium bovis BCG 

References

  1. 1.
    McMichael AJ, Pilch JR, Galfre G, Mason DY, Fabre JW, Milstein C (1979) A human thymocyte antigen defined by a hybrid myeloma monoclonal antibody. Eur J Immunol 9(3):205–210. doi: 10.1002/eji.1830090307 PubMedCrossRefGoogle Scholar
  2. 2.
    Calabi F, Milstein C (1986) A novel family of human major histocompatibility complex-related genes not mapping to chromosome 6. Nature 323(6088):540–543. doi: 10.1038/323540a0 PubMedCrossRefGoogle Scholar
  3. 3.
    Martin LH, Calabi F, Milstein C (1986) Isolation of CD1 genes: a family of major histocompatibility complex-related differentiation antigens. Proc Natl Acad Sci U S A 83(23):9154–9158PubMedCrossRefGoogle Scholar
  4. 4.
    Calabi F, Jarvis JM, Martin L, Milstein C (1989) Two classes of CD1 genes. Eur J Immunol 19(2):285–292. doi: 10.1002/eji.1830190211 PubMedCrossRefGoogle Scholar
  5. 5.
    Balk SP, Bleicher PA, Terhorst C (1991) Isolation and expression of cDNA encoding the murine homologues of CD1. J Immunol 146(2):768–774PubMedGoogle Scholar
  6. 6.
    Bendelac A (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268:863–865PubMedCrossRefGoogle Scholar
  7. 7.
    Mendiratta SK, Martin WD, Hong S, Boesteanu A, Joyce S, Van Kaer L (1997) CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6(4):469–477PubMedCrossRefGoogle Scholar
  8. 8.
    Jayawardena-Wolf J, Benlagha K, Chiu YH, Mehr R, Bendelac A (2001) CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 15:897–908PubMedCrossRefGoogle Scholar
  9. 9.
    Nakagawa TY (1999) Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10:207–217PubMedCrossRefGoogle Scholar
  10. 10.
    Sugita M,Cao X,Watts GF,Rogers RA,Bonifacino JS,Brenner MB (2002) Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity 16(5):697–706. doi:S1074761302003114 [pii]Google Scholar
  11. 11.
    Cernadas M, Sugita M, van der Wel N, Cao X, Gumperz JE, Maltsev S, Besra GS, Behar SM, Peters PJ, Brenner MB (2003) Lysosomal localization of murine CD1d mediated by AP-3 is necessary for NK T cell development. J Immunol 171(8):4149–4155PubMedGoogle Scholar
  12. 12.
    Lawton AP,Prigozy TI,Brossay L,Pei B,Khurana A,Martin D,Zhu T,Spate K, Ozga M, Honing S, Bakke O, Kronenberg M (2005) The mouse CD1d cytoplasmic tail mediates CD1d trafficking and antigen presentation by adaptor protein 3-dependent and -independent mechanisms. J Immunol 174(6):3179–3186. doi:174/6/3179 [pii]Google Scholar
  13. 13.
    Brossay L, Jullien D, Cardell S, Sydora BC, Burdin N, Modlin RL, Kronenberg M (1997) Mouse CD1 is mainly expressed on hemopoietic-derived cells. J Immunol 159(3):1216–1224PubMedGoogle Scholar
  14. 14.
    Roark JH, Park SH, Jayawardena J, Kavita U, Shannon M, Bendelac A (1998) CD1.1 expression by mouse antigen-presenting cells and marginal zone B cells. J Immunol 160(7):3121–3127PubMedGoogle Scholar
  15. 15.
    Forestier C, Park SH, Wei D, Benlagha K, Teyton L, Bendelac A (2003) T cell development in mice expressing CD1d directed by a classical MHC class II promoter. J Immunol 171(8):4096–4104PubMedGoogle Scholar
  16. 16.
    Schumann J,Pittoni P,Tonti E,Macdonald HR,Dellabona P,Casorati G (2005) Targeted expression of human CD1d in transgenic mice reveals independent roles for thymocytes and thymic APCs in positive and negative selection of Valpha14i NKT cells. J Immunol 175(11):7303–7310. doi:175/11/7303 [pii]Google Scholar
  17. 17.
    Bonish B, Jullien D, Dutronc Y, Huang BB, Modlin R, Spada FM, Porcelli SA, Nickoloff BJ (2000) Overexpression of CD1d by keratinocytes in psoriasis and CD1d-dependent IFN-gamma production by NK-T cells. J Immunol 165(7):4076–4085PubMedGoogle Scholar
  18. 18.
    Salamone MC, Rabinovich GA, Mendiguren AK, Salamone GV, Fainboim L (2001) Activation-induced expression of CD1d antigen on mature T cells. J Leukoc Biol 69(2):207–214PubMedGoogle Scholar
  19. 19.
    Colgan SP, Pitman RS, Nagaishi T, Mizoguchi A, Mizoguchi E, Mayer LF, Shao L, Sartor RB, Subjeck JR, Blumberg RS (2003) Intestinal heat shock protein 110 regulates expression of CD1d on intestinal epithelial cells. J Clin Invest 112(5):745–754. doi: 10.1172/JCI17241 PubMedGoogle Scholar
  20. 20.
    Sanchez DJ, Gumperz JE, Ganem D (2005) Regulation of CD1d expression and function by a herpesvirus infection. J Clin Invest 115(5):1369–1378. doi: 10.1172/JCI24041 PubMedGoogle Scholar
  21. 21.
    Lin Y, Roberts TJ, Spence PM, Brutkiewicz RR (2005) Reduction in CD1d expression on dendritic cells and macrophages by an acute virus infection. J Leukoc Biol 77(2):151–158. doi: 10.1189/jlb.0704399 PubMedCrossRefGoogle Scholar
  22. 22.
    Yuan W, Dasgupta A, Cresswell P (2006) Herpes simplex virus evades natural killer T cell recognition by suppressing CD1d recycling. Nat Immunol 7:835–842PubMedCrossRefGoogle Scholar
  23. 23.
    Berntman E, Rolf J, Johansson C, Anderson P, Cardell SL (2005) The role of CD1d-restricted NK T lymphocytes in the immune response to oral infection with Salmonella typhimurium. Eur J Immunol 35(7):2100–2109. doi: 10.1002/eji.200425846 PubMedCrossRefGoogle Scholar
  24. 24.
    Skold M, Xiong X, Illarionov PA, Besra GS, Behar SM (2005) Interplay of cytokines and microbial signals in regulation of CD1d expression and NKT cell activation. J Immunol 175(6):3584–3593PubMedGoogle Scholar
  25. 25.
    Raghuraman G, Geng Y, Wang CR (2006) IFN-beta-mediated up-regulation of CD1d in bacteria-infected APCs. J Immunol 177(11):7841–7848PubMedGoogle Scholar
  26. 26.
    Arrunategui-Correa V, Lenz L, Kim HS (2004) CD1d-independent regulation of NKT cell migration and cytokine production upon Listeria monocytogenes infection. Cell Immunol 232(1–2):38–48. doi: 10.1016/j.cellimm.2005.01.009 PubMedCrossRefGoogle Scholar
  27. 27.
    Im JS, Arora P, Bricard G, Molano A, Venkataswamy MM, Baine I, Jerud ES, Goldberg MF, Baena A, Yu KO, Ndonye RM, Howell AR, Yuan W, Cresswell P, Chang YT, Illarionov PA, Besra GS, Porcelli SA (2009) Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity 30(6):888–898. doi:S1074-7613(09)00238-6 [pii]  10.1016/j.immuni.2009.03.022 Google Scholar
  28. 28.
    Zhou D (2004) Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303:523–527PubMedCrossRefGoogle Scholar
  29. 29.
    Allan LL, Hoefl K, Zheng DJ, Chung BK, Kozak FK, Tan R, van den Elzen P (2009) Apolipoprotein-mediated lipid antigen presentation in B cells provides a pathway for innate help by NKT cells. Blood 114(12):2411–2416. doi: 10.1182/blood-2009-04-211417 PubMedCrossRefGoogle Scholar
  30. 30.
    van den Elzen P, Garg S, Leon L, Brigl M, Leadbetter EA, Gumperz JE, Dascher CC, Cheng TY, Sacks FM, Illarionov PA, Besra GS, Kent SC, Moody DB, Brenner MB (2005) Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437(7060):906–910. doi: 10.1038/nature04001 PubMedCrossRefGoogle Scholar
  31. 31.
    Kang SJ, Cresswell P (2004) Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat Immunol 5:175–181PubMedCrossRefGoogle Scholar
  32. 32.
    Zhou D (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789PubMedCrossRefGoogle Scholar
  33. 33.
    Yuan W (2007) Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. Proc Natl Acad Sci U S A 104:5551–5556PubMedCrossRefGoogle Scholar
  34. 34.
    Brozovic S (2004) CD1d function is regulated by microsomal triglyceride transfer protein. Nat Med 10:535–539PubMedCrossRefGoogle Scholar
  35. 35.
    Dougan SK, Salas A, Rava P, Agyemang A, Kaser A, Morrison J, Khurana A, Kronenberg M, Johnson C, Exley M, Hussain MM, Blumberg RS (2005) Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells. J Exp Med 202(4):529–539. doi: 10.1084/jem.20050183 PubMedCrossRefGoogle Scholar
  36. 36.
    Schrantz N, Sagiv Y, Liu Y, Savage PB, Bendelac A, Teyton L (2007) The Niemann-Pick type C2 protein loads isoglobotrihexosylceramide onto CD1d molecules and contributes to the thymic selection of NKT cells. J Exp Med 204(4):841–852. doi: 10.1084/jem.20061562 PubMedCrossRefGoogle Scholar
  37. 37.
    Freigang S, Zadorozhny V, McKinney MK, Krebs P, Herro R, Pawlak J, Kain L, Schrantz N, Masuda K, Liu Y, Savage PB, Bendelac A, Cravatt BF, Teyton L (2010) Fatty acid amide hydrolase shapes NKT cell responses by influencing the serum transport of lipid antigen in mice. J Clin Invest 120(6):1873–1884. doi: 10.1172/JCI40451 PubMedCrossRefGoogle Scholar
  38. 38.
    Ballas ZK, Rasmussen W (1990) Nk1.1+ thymocytes—adult murine Cd4-Cd8-thymocytes contain an Nk1.1+, Cd3+, Cd5hi, Cd44hi, Tcr-V-Beta-8+ subset. J Immunol 145(4):1039–1045PubMedGoogle Scholar
  39. 39.
    Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH (1986) The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 136(12):4480–4486PubMedGoogle Scholar
  40. 40.
    Exley M, Garcia J, Balk SP, Porcelli S (1997) Requirements for CD1d recognition by human invariant Valpha24+ CD4-CD8-T cells. J Exp Med 186(1):109–120PubMedCrossRefGoogle Scholar
  41. 41.
    Yankelevich B, Knobloch C, Nowicki M, Dennert G (1989) A novel cell type responsible for marrow graft-rejection in mice—T-cells with Nk phenotype cause acute rejection of marrow grafts. J Immunol 142(10):3423–3430PubMedGoogle Scholar
  42. 42.
    Koseki H, Asano H, Inaba T, Miyashita N, Moriwaki K, Lindahl KF, Mizutani Y, Imai K, Taniguchi M (1991) Dominant expression of a distinctive V14+ T-cell antigen receptor alpha chain in mice. Proc Natl Acad Sci U S A 88(17):7518–7522PubMedCrossRefGoogle Scholar
  43. 43.
    Lantz O, Bendelac A (1994) An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8-T cells in mice and humans. J Exp Med 180(3):1097–1106PubMedCrossRefGoogle Scholar
  44. 44.
    Porcelli S, Yockey CE, Brenner MB, Balk SP (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8-alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178(1):1–16PubMedCrossRefGoogle Scholar
  45. 45.
    Arase H, Arase N, Ogasawara K, Good RA, Onoe K (1992) An NK1.1+ CD4+ 8-single-positive thymocyte subpopulation that expresses a highly skewed T-cell antigen receptor V beta family. Proc Natl Acad Sci U S A 89(14):6506–6510Google Scholar
  46. 46.
    Hayakawa K, Lin BT, Hardy RR (1992) Murine thymic CD4+ T cell subsets: a subset (Thy0) that secretes diverse cytokines and overexpresses the V beta 8 T cell receptor gene family. J Exp Med 176(1):269–274PubMedCrossRefGoogle Scholar
  47. 47.
    Dellabona P, Padovan E, Casorati G, Brockhaus M, Lanzavecchia A (1994) An invariant V alpha 24-J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD4-8-T cells. J Exp Med 180(3):1171–1176PubMedCrossRefGoogle Scholar
  48. 48.
    Porcelli S, Gerdes D, Fertig AM, Balk SP (1996) Human T cells expressing an invariant V alpha 24-J alpha Q TCR alpha are CD4- and heterogeneous with respect to TCR beta expression. Hum Immunol 48(1–2):63–67PubMedCrossRefGoogle Scholar
  49. 49.
    Cui J, Shin T, Kawano T, Sato H, Kondo E, Toura I, Kaneko Y, Koseki H, Kanno M, Taniguchi M (1997) Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 278(5343):1623–1626PubMedCrossRefGoogle Scholar
  50. 50.
    Uldrich AP, Patel O, Cameron G, Pellicci DG, Day EB, Sullivan LC, Kyparissoudis K, Kjer-Nielsen L, Vivian JP, Cao B, Brooks AG, Williams SJ, Illarionov P, Besra GS, Turner SJ, Porcelli SA, McCluskey J, Smyth MJ, Rossjohn J, Godfrey DI (2011) A semi-invariant Valpha10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen-recognition properties. Nat Immunol 12(7):616–623. doi: 10.1038/ni.2051 PubMedCrossRefGoogle Scholar
  51. 51.
    Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268(5212):863–865PubMedCrossRefGoogle Scholar
  52. 52.
    Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434(7032):520–525. doi: 10.1038/nature03407 PubMedCrossRefGoogle Scholar
  53. 53.
    Mattner J (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529PubMedCrossRefGoogle Scholar
  54. 54.
    Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia MR, Zajonc DM, Ben-Menachem G, Ainge GD, Painter GF, Khurana A, Hoebe K, Behar SM, Beutler B, Wilson IA, Tsuji M, Sellati TJ, Wong CH, Kronenberg M (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7(9):978–986. doi: 10.1038/ni1380 PubMedCrossRefGoogle Scholar
  55. 55.
    Godfrey DI, Stankovic S, Baxter AG (2010) Raising the NKT cell family. Nat Immunol 11(3):197–206. doi: 10.1038/ni.1841 PubMedCrossRefGoogle Scholar
  56. 56.
    Chen YH, Chiu NM, Mandal M, Wang N, Wang CR (1997) Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice. Immunity 6(4):459–467. doi:S1074-7613(00)80289-7 [pii]Google Scholar
  57. 57.
    Eberl G, Lees R, Smiley ST, Taniguchi M, Grusby MJ, MacDonald HR (1999) Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J Immunol 162(11):6410–6419PubMedGoogle Scholar
  58. 58.
    Benlagha K, Wei DG, Veiga J, Teyton L, Bendelac A (2005) Characterization of the early stages of thymic NKT cell development. J Exp Med 202(4):485–492. doi:jem.20050456 [pii]  10.1084/jem.20050456 Google Scholar
  59. 59.
    Griewank K, Borowski C, Rietdijk S, Wang N, Julien A, Wei DG, Mamchak AA, Terhorst C, Bendelac A (2007) Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 27(5):751–762. doi:S1074-7613(07)00493-1 [pii]  10.1016/j.immuni.2007.08.020 Google Scholar
  60. 60.
    Dao T, Guo D, Ploss A, Stolzer A, Saylor C, Boursalian TE, Im JS, Sant’Angelo DB (2004) Development of CD1d-restricted NKT cells in the mouse thymus. Eur J Immunol 34(12):3542–3552. doi: 10.1002/eji.200425546 PubMedCrossRefGoogle Scholar
  61. 61.
    Eidson M, Wahlstrom J, Beaulieu AM, Zaidi B, Carsons SE, Crow PK, Yuan J, Wolchok JD, Horsthemke B, Wieczorek D, Sant’Angelo DB (2011) Altered development of NKT cells, gammadelta T cells, CD8 T cells and NK cells in a PLZF deficient patient. PLoS ONE 6(9):e24441. doi: 10.1371/journal.pone.0024441 PubMedCrossRefGoogle Scholar
  62. 62.
    Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li B, Lantz O, Bendelac A (2008) The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29(3):391–403. doi: 10.1016/j.immuni.2008.07.011 PubMedCrossRefGoogle Scholar
  63. 63.
    Engel I, Hammond K, Sullivan BA, He X, Taniuchi I, Kappes D, Kronenberg M (2010) Co-receptor choice by V alpha14i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection. J Exp Med 207(5):1015–1029. doi: 10.1084/jem.20090557 PubMedCrossRefGoogle Scholar
  64. 64.
    Ohteki T, MacDonald HR (1994) Major histocompatibility complex class I related molecules control the development of CD4+ 8- and CD4-8-subsets of natural killer 1.1+ T cell receptor-alpha/beta+ cells in the liver of mice. J Exp Med 180(2):699–704PubMedCrossRefGoogle Scholar
  65. 65.
    Hammond KJ, Pelikan SB, Crowe NY, Randle-Barrett E, Nakayama T, Taniguchi M, Smyth MJ, van Driel IR, Scollay R, Baxter AG, Godfrey DI (1999) NKT cells are phenotypically and functionally diverse. Eur J Immunol 29(11):3768–3781. doi:  10.1002/(SICI)1521-4141(199911)29:11<3768::AID-IMMU3768>3.0.CO;2-G, 10.1002/(SICI)1521-4141(199911)29:11<3768::AID-IMMU3768>3.0.CO;2-G [pii]Google Scholar
  66. 66.
    Sykes M (1990) Unusual T cell populations in adult murine bone marrow. Prevalence of CD3 + CD4-CD8- and alpha beta TCR + NK1.1+ cells. J Immunol 145(10):3209–3215PubMedGoogle Scholar
  67. 67.
    Bienemann K, Iouannidou K, Schoenberg K, Krux F, Reuther S, Feyen O, Schuster F, Uhrberg M, Laws HJ, Borkhardt A (2011) iNKT cell frequency in peripheral blood of Caucasian children and adolescent: the absolute iNKT cell count is stable from birth to adulthood. Scand J Immunol 74(4):406–411. doi: 10.1111/j.1365-3083.2011.02591.x PubMedCrossRefGoogle Scholar
  68. 68.
    Fereidouni M, Farid Hosseini R, Jabbari Azad F, Schenkel J, Varasteh A, Mahmoudi M (2010) Frequency of circulating iNKT cells among Iranian healthy adults. Cytom B Clin Cytom 78(1):65–69. doi: 10.1002/cyto.b.20489 Google Scholar
  69. 69.
    Peralbo E, DelaRosa O, Gayoso I, Pita ML, Tarazona R, Solana R (2006) Decreased frequency and proliferative response of invariant Valpha24Vbeta11 natural killer T (iNKT) cells in healthy elderly. Biogerontology 7(5–6):483–492. doi: 10.1007/s10522-006-9063-5 PubMedCrossRefGoogle Scholar
  70. 70.
    Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M, Briskin MJ, Dustin ML, Littman DR (2005) Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 3(4):e113. doi: 10.1371/journal.pbio.0030113 PubMedCrossRefGoogle Scholar
  71. 71.
    Syn WK, Oo YH, Pereira TA, Karaca GF, Jung Y, Omenetti A, Witek RP, Choi SS, Guy CD, Fearing CM, Teaberry V, Pereira FE, Adams DH, Diehl AM (2010) Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51(6):1998–2007. doi: 10.1002/hep.23599 PubMedCrossRefGoogle Scholar
  72. 72.
    Kenna T, Golden-Mason L, Porcelli SA, Koezuka Y, Hegarty JE, O’Farrelly C, Doherty DG (2003) NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 171(4):1775–1779PubMedGoogle Scholar
  73. 73.
    Tsukahara A, Seki S, Iiai T, Moroda T, Watanabe H, Suzuki S, Tada T, Hiraide H, Hatakeyama K, Abo T (1997) Mouse liver T cells: their change with aging and in comparison with peripheral T cells. Hepatology 26(2):301–309. doi:S0270913997003443 [pii]  10.1002/hep.510260208 Google Scholar
  74. 74.
    Crough T, Purdie DM, Okai M, Maksoud A, Nieda M, Nicol AJ (2004) Modulation of human Valpha24(+)Vbeta11(+) NKT cells by age, malignancy and conventional anticancer therapies. Br J Cancer 91(11):1880–1886. doi: 10.1038/sj.bjc.6602218 PubMedCrossRefGoogle Scholar
  75. 75.
    Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114(10):1379–1388. doi: 10.1172/JCI23594 PubMedGoogle Scholar
  76. 76.
    Wingender G, Krebs P, Beutler B, Kronenberg M (2010) Antigen-specific cytotoxicity by invariant NKT cells in vivo is CD95/CD178-dependent and is correlated with antigenic potency. J Immunol 185(5):2721–2729. doi: 10.4049/jimmunol.1001018 PubMedCrossRefGoogle Scholar
  77. 77.
    Metelitsa LS, Naidenko OV, Kant A, Wu HW, Loza MJ, Perussia B, Kronenberg M, Seeger RC (2001) Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 167(6):3114–3122PubMedGoogle Scholar
  78. 78.
    Chang PP, Barral P, Fitch J, Pratama A, Ma CS, Kallies A, Hogan JJ, Cerundolo V, Tangye SG, Bittman R, Nutt SL, Brink R, Godfrey DI, Batista FD, Vinuesa CG (2012) Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat Immunol 13(1):35–43. doi: 10.1038/ni.2166 CrossRefGoogle Scholar
  79. 79.
    Kronenberg M, Kinjo Y (2009) Innate-like recognition of microbes by invariant natural killer T cells. Curr Opin Immunol 21(4):391–396. doi: 10.1016/j.coi.2009.07.002 PubMedCrossRefGoogle Scholar
  80. 80.
    Cohen NR, Garg S, Brenner MB (2009) Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv Immunol 102:1–94. doi: 10.1016/S0065-2776(09)01201-2 PubMedCrossRefGoogle Scholar
  81. 81.
    Kobayashi E, Motoki K, Uchida T, Fukushima H, Koezuka Y (1995) KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res 7(10–11):529–534PubMedGoogle Scholar
  82. 82.
    Yu KO, Porcelli SA (2005) The diverse functions of CD1d-restricted NKT cells and their potential for immunotherapy. Immunol Lett 100(1):42–55. doi: 10.1016/j.imlet.2005.06.010 PubMedCrossRefGoogle Scholar
  83. 83.
    Parekh VV, Lalani S, Van Kaer L (2007) The in vivo response of invariant natural killer T cells to glycolipid antigens. Int Rev Immunol 26(1–2):31–48. doi: 10.1080/08830180601070179 PubMedCrossRefGoogle Scholar
  84. 84.
    Fujii S, Shimizu K, Hemmi H, Steinman RM (2007) Innate Valpha14(+) natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev 220:183–198. doi: 10.1111/j.1600-065X.2007.00561.x PubMedCrossRefGoogle Scholar
  85. 85.
    Silk JD, Hermans IF, Gileadi U, Chong TW, Shepherd D, Salio M, Mathew B, Schmidt RR, Lunt SJ, Williams KJ, Stratford IJ, Harris AL, Cerundolo V (2004) Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J Clin Invest 114(12):1800–1811. doi: 10.1172/JCI22046 PubMedGoogle Scholar
  86. 86.
    Eberl G, MacDonald HR (2000) Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 30(4):985–992. doi: 10.1002/(SICI)1521-4141(200004)30:4<985:AID-IMMU985>3.0.CO;2-E PubMedCrossRefGoogle Scholar
  87. 87.
    Arora P, Venkataswamy MM, Baena A, Bricard G, Li Q, Veerapen N, Ndonye R, Park JJ, Lee JH, Seo KC, Howell AR, Chang YT, Illarionov PA, Besra GS, Chung SK, Porcelli SA (2011) A rapid fluorescence-based assay for classification of iNKT cell activating glycolipids. J Am Chem Soc 133(14):5198–5201. doi: 10.1021/ja200070u PubMedCrossRefGoogle Scholar
  88. 88.
    Venkataswamy MM, Porcelli SA (2010) Lipid and glycolipid antigens of CD1d-restricted natural killer T cells. Semin Immunol 22(2):68–78. doi: 10.1016/j.smim.2009.10.003 PubMedCrossRefGoogle Scholar
  89. 89.
    Li Q, Ndonye RM, Illarionov PA, Yu KO, Jerud ES, Diaz K, Bricard G, Porcelli SA, Besra GS, Chang YT, Howell AR (2007) Rapid identification of immunostimulatory alpha-galactosylceramides using synthetic combinatorial libraries. J Comb Chem 9(6):1084–1093. doi: 10.1021/cc070057i PubMedCrossRefGoogle Scholar
  90. 90.
    Maldonado-Garcia G, Chico-Ortiz M, Lopez-Marin LM, Sanchez-Garcia FJ (2004) High-polarity Mycobacterium avium-derived lipids interact with murine macrophage lipid rafts. Scand J Immunol 60(5):463–470. doi: 10.1111/j.0300-9475.2004.01511.x PubMedCrossRefGoogle Scholar
  91. 91.
    Joyce S, Woods AS, Yewdell JW, Bennink JR, De Silva AD, Boesteanu A, Balk SP, Cotter RJ, Brutkiewicz RR (1998) Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 279(5356):1541–1544PubMedCrossRefGoogle Scholar
  92. 92.
    Gumperz JE (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–221PubMedCrossRefGoogle Scholar
  93. 93.
    Fox LM (2009) Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol 7:e1000228PubMedCrossRefGoogle Scholar
  94. 94.
    Porubsky S (2007) Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc Natl Acad Sci U S A 104:5977–5982PubMedCrossRefGoogle Scholar
  95. 95.
    Gadola SD (2006) Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases. J Exp Med 203:2293–2303PubMedCrossRefGoogle Scholar
  96. 96.
    Brennan PJ, Tatituri RV, Brigl M, Kim EY, Tuli A, Sanderson JP, Gadola SD, Hsu FF, Besra GS, Brenner MB (2011) Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat Immunol. doi: 10.1038/ni.2143 PubMedGoogle Scholar
  97. 97.
    Fischer K, Scotet E, Niemeyer M, Koebernick H, Zerrahn J, Maillet S, Hurwitz R, Kursar M, Bonneville M, Kaufmann SH, Schaible UE (2004) Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci U S A 101(29):10685–10690. doi: 10.1073/pnas.0403787101 PubMedCrossRefGoogle Scholar
  98. 98.
    Kinjo Y, Illarionov P, Vela JL, Pei B, Girardi E, Li X, Li Y, Imamura M, Kaneko Y, Okawara A, Miyazaki Y, Gomez-Velasco A, Rogers P, Dahesh S, Uchiyama S, Khurana A, Kawahara K, Yesilkaya H, Andrew PW, Wong CH, Kawakami K, Nizet V, Besra GS, Tsuji M, Zajonc DM, Kronenberg M (2011) Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nat Immunol 12(10):966–974. doi: 10.1038/ni.2096 PubMedCrossRefGoogle Scholar
  99. 99.
    Kinjo Y, Kronenberg M (2009) Detection of microbes by natural killer T cells. Adv Exp Med Biol 633:17–26PubMedCrossRefGoogle Scholar
  100. 100.
    Kinjo Y, Pei B, Bufali S, Raju R, Richardson SK, Imamura M, Fujio M, Wu D, Khurana A, Kawahara K, Wong CH, Howell AR, Seeberger PH, Kronenberg M (2008) Natural Sphingomonas glycolipids vary greatly in their ability to activate natural killer T cells. Chem Biol 15(7):654–664. doi: 10.1016/j.chembiol.2008.05.012 PubMedCrossRefGoogle Scholar
  101. 101.
    Amprey JL, Im JS, Turco SJ, Murray HW, Illarionov PA, Besra GS, Porcelli SA, Spath GF (2004) A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J Exp Med 200(7):895–904. doi: 10.1084/jem.20040704 PubMedCrossRefGoogle Scholar
  102. 102.
    Lotter H, Gonzalez-Roldan N, Lindner B, Winau F, Isibasi A, Moreno-Lafont M, Ulmer AJ, Holst O, Tannich E, Jacobs T (2009) Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathog 5(5):e1000434. doi: 10.1371/journal.ppat.1000434 PubMedCrossRefGoogle Scholar
  103. 103.
    Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4(12):1230–1237. doi:10.1038/ni1002ni1002 [pii]Google Scholar
  104. 104.
    Wu D, Zajonc DM, Fujio M, Sullivan BA, Kinjo Y, Kronenberg M, Wilson IA, Wong CH (2006) Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc Natl Acad Sci U S A 103(11):3972–3977. doi: 10.1073/pnas.0600285103 PubMedCrossRefGoogle Scholar
  105. 105.
    Girardi E, Yu ED, Li Y, Tarumoto N, Pei B, Wang J, Illarionov P, Kinjo Y, Kronenberg M, Zajonc DM (2011) Unique interplay between sugar and lipid in determining the antigenic potency of bacterial antigens for NKT cells. PLoS Biol 9(11):e1001189. doi: 10.1371/journal.pbio.1001189 PubMedCrossRefGoogle Scholar
  106. 106.
    Zajonc DM, Maricic I, Wu D, Halder R, Roy K, Wong CH, Kumar V, Wilson IA (2005) Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J Exp Med 202(11):1517–1526. doi: 10.1084/jem.20051625 PubMedCrossRefGoogle Scholar
  107. 107.
    Zajonc DM, Savage PB, Bendelac A, Wilson IA, Teyton L (2008) Crystal structures of mouse CD1d-iGb3 complex and its cognate Valpha14 T cell receptor suggest a model for dual recognition of foreign and self glycolipids. J Mol Biol 377(4):1104–1116. doi: 10.1016/j.jmb.2008.01.061 PubMedCrossRefGoogle Scholar
  108. 108.
    Borg NA, Wun KS, Kjer-Nielsen L, Wilce MC, Pellicci DG, Koh R, Besra GS, Bharadwaj M, Godfrey DI, McCluskey J, Rossjohn J (2007) CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448(7149):44–49. doi: 10.1038/nature05907 PubMedCrossRefGoogle Scholar
  109. 109.
    Li Y, Girardi E, Wang J, Yu ED, Painter GF, Kronenberg M, Zajonc DM (2010) The Valpha14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. J Exp Med 207(11):2383–2393. doi: 10.1084/jem.20101335 PubMedCrossRefGoogle Scholar
  110. 110.
    Wang J, Li Y, Kinjo Y, Mac TT, Gibson D, Painter GF, Kronenberg M, Zajonc DM (2010) Lipid binding orientation within CD1d affects recognition of Borrelia burgorferi antigens by NKT cells. Proc Natl Acad Sci U S A 107(4):1535–1540. doi: 10.1073/pnas.0909479107 PubMedCrossRefGoogle Scholar
  111. 111.
    Joyce S, Girardi E, Zajonc DM (2011) NKT cell ligand recognition logic: molecular basis for a synaptic duet and transmission of inflammatory effectors. J Immunol 187(3):1081–1089. doi: 10.4049/jimmunol.1001910 PubMedCrossRefGoogle Scholar
  112. 112.
    Florence WC, Xia C, Gordy LE, Chen W, Zhang Y, Scott-Browne J, Kinjo Y, Yu KO, Keshipeddy S, Pellicci DG, Patel O, Kjer-Nielsen L, McCluskey J, Godfrey DI, Rossjohn J, Richardson SK, Porcelli SA, Howell AR, Hayakawa K, Gapin L, Zajonc DM, Wang PG, Joyce S (2009) Adaptability of the semi-invariant natural killer T-cell receptor towards structurally diverse CD1d-restricted ligands. EMBO J 28(22):3579–3590. doi: 10.1038/emboj.2009.286 PubMedCrossRefGoogle Scholar
  113. 113.
    Salio M, Speak AO, Shepherd D, Polzella P, Illarionov PA, Veerapen N, Besra GS, Platt FM, Cerundolo V (2007) Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci U S A 104(51):20490–20495. doi: 10.1073/pnas.0710145104 PubMedCrossRefGoogle Scholar
  114. 114.
    Sada-Ovalle I, Chiba A, Gonzales A, Brenner MB, Behar SM (2008) Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-gamma, and kill intracellular bacteria. PLoS Pathog 4(12):e1000239. doi: 10.1371/journal.ppat.1000239 PubMedCrossRefGoogle Scholar
  115. 115.
    Duthie MS, Kahn M, White M, Kapur RP, Kahn SJ (2005) Both CD1d antigen presentation and interleukin-12 are required to activate natural killer T cells during Trypanosoma cruzi infection. Infect Immun 73(3):1890–1894. doi: 10.1128/IAI.73.3.1890-1894.2005 PubMedCrossRefGoogle Scholar
  116. 116.
    Emoto Y, Yoshizawa I, Hurwitz R, Brinkmann V, Kaufmann SH, Emoto M (2008) Role of interleukin-12 in determining differential kinetics of invariant natural killer T cells in response to differential burden of Listeria monocytogenes. Microbes Infect 10(3):224–232. doi: 10.1016/j.micinf.2007.11.008 PubMedCrossRefGoogle Scholar
  117. 117.
    Nagarajan NA, Kronenberg M (2007) Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J Immunol 178(5):2706–2713PubMedGoogle Scholar
  118. 118.
    Stetson DB, Mohrs M, Reinhardt RL, Baron JL, Wang ZE, Gapin L, Kronenberg M, Locksley RM (2003) Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 198(7):1069–1076. doi: 10.1084/jem.20030630 jem.20030630 [pii]Google Scholar
  119. 119.
    Matsuda JL, Gapin L, Baron JL, Sidobre S, Stetson DB, Mohrs M,Locksley RM, Kronenberg M (2003) Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci U S A 100(14):8395–8400. doi: 10.1073/pnas.1332805100 1332805100 [pii]Google Scholar
  120. 120.
    Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, Cerundolo V (2003) NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171(10):5140–5147PubMedGoogle Scholar
  121. 121.
    Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB (1999) Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 189(12):1973–1980PubMedCrossRefGoogle Scholar
  122. 122.
    Dieli F, Taniguchi M, Kronenberg M, Sidobre S, Ivanyi J, Fattorini L, Iona E, Orefici G, De Leo G, Russo D, Caccamo N, Sireci G, Di Sano C, Salerno A (2003) An anti-inflammatory role for V alpha 14 NK T cells in Mycobacterium bovis bacillus Calmette-Guerin-infected mice. J Immunol 171(4):1961–1968PubMedGoogle Scholar
  123. 123.
    Ryll R, Watanabe K, Fujiwara N, Takimoto H, Hasunuma R, Kumazawa Y, Okada M, Yano I (2001) Mycobacterial cord factor, but not sulfolipid, causes depletion of NKT cells and upregulation of CD1d1 on murine macrophages. Microbes Infect 3(8):611–619. doi:S1286457901014162 [pii]Google Scholar
  124. 124.
    Gilleron M, Ronet C, Mempel M, Monsarrat B, Gachelin G, Puzo G (2001) Acylation state of the phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette Guerin and ability to induce granuloma and recruit natural killer T cells. J Biol Chem 276(37):34896–34904. doi: 10.1074/jbc.M103908200 M103908200 [pii]Google Scholar
  125. 125.
    Apostolou I, Takahama Y, Belmant C, Kawano T, Huerre M, Marchal G, Cui J, Taniguchi M, Nakauchi H, Fournie JJ, Kourilsky P, Gachelin G (1999) Murine natural killer T(NKT) cells [correction of natural killer cells] contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc Natl Acad Sci U S A 96(9):5141–5146PubMedCrossRefGoogle Scholar
  126. 126.
    Guidry TV, Olsen M, Kil KS, Hunter RL Jr, Geng YJ, Actor JK (2004) Failure of CD1D-/- mice to elicit hypersensitive granulomas to mycobacterial cord factor trehalose 6,6′-dimycolate. J Interferon Cytokine Res 24(6):362–371. doi: 10.1089/107999004323142222 PubMedCrossRefGoogle Scholar
  127. 127.
    Burdin N, Brossay L, Koezuka Y, Smiley ST, Grusby MJ, Gui M, Taniguchi M, Hayakawa K, Kronenberg M (1998) Selective ability of mouse CD1 to present glycolipids: alpha-galactosylceramide specifically stimulates V alpha 14+ NK T lymphocytes. J Immunol 161(7):3271–3281PubMedGoogle Scholar
  128. 128.
    Sousa AO, Mazzaccaro RJ, Russell RG, Lee FK, Turner OC, Hong S, Van Kaer L, Bloom BR (2000) Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci U S A 97(8):4204–4208PubMedCrossRefGoogle Scholar
  129. 129.
    Kawakami K, Kinjo Y, Uezu K, Yara S, Miyagi K, Koguchi Y, Nakayama T, Taniguchi M, Saito A (2002) Minimal contribution of Valpha14 natural killer T cells to Th1 response and host resistance against mycobacterial infection in mice. Microbiol Immunol 46(3):207–210PubMedGoogle Scholar
  130. 130.
    Sugawara I, Yamada H, Mizuno S, Li CY, Nakayama T, Taniguchi M (2002) Mycobacterial infection in natural killer T cell knockout mice. Tuberculosis 82(2–3):97–104. doi:S1472979202903318 [pii]Google Scholar
  131. 131.
    D’Souza CD, Cooper AM, Frank AA, Ehlers S, Turner J, Bendelac A, Orme IM (2000) A novel nonclassic beta2-microglobulin-restricted mechanism influencing early lymphocyte accumulation and subsequent resistance to tuberculosis in the lung. Am J Respir Cell Mol Biol 23(2):188–193PubMedGoogle Scholar
  132. 132.
    Szalay G, Zugel U, Ladel CH, Kaufmann SH (1999) Participation of group 2 CD1 molecules in the control of murine tuberculosis. Microbes Infect 1(14):1153–1157PubMedCrossRefGoogle Scholar
  133. 133.
    Emoto M, Emoto Y, Kaufmann SH (1997) Bacille Calmette Guerin and interleukin-12 down-modulate interleukin-4-producing CD4+ NK1+ T lymphocytes. Eur J Immunol 27(1):183–188. doi: 10.1002/eji.1830270127 PubMedCrossRefGoogle Scholar
  134. 134.
    Chiba A, Dascher CC, Besra GS, Brenner MB (2008) Rapid NKT cell responses are self-terminating during the course of microbial infection. J Immunol 181(4):2292–2302. doi:181/4/2292 [pii]Google Scholar
  135. 135.
    Veenstra H, Baumann R, Carroll NM, Lukey PT, Kidd M, Beyers N, Bolliger CT, van Helden PD, Walzl G (2006) Changes in leucocyte and lymphocyte subsets during tuberculosis treatment; prominence of CD3dimCD56+ natural killer T cells in fast treatment responders. Clin Exp Immunol 145(2):252–260. doi:CEI3144 [pii]  10.1111/j.1365-2249.2006.03144.x Google Scholar
  136. 136.
    Im JS, Kang TJ, Lee SB, Kim CH, Lee SH, Venkataswamy MM, Serfass ER, Chen B, Illarionov PA, Besra GS, Jacobs WR Jr, Chae GT, Porcelli SA (2008) Alteration of the relative levels of iNKT cell subsets is associated with chronic mycobacterial infections. Clin Immunol 127(2):214–224. doi:S1521-6616(07)01441-6 [pii]  10.1016/j.clim.2007.12.005 Google Scholar
  137. 137.
    Montoya CJ, Catano JC, Ramirez Z, Rugeles MT, Wilson SB, Landay AL (2008) Invariant NKT cells from HIV-1 or Mycobacterium tuberculosis-infected patients express an activated phenotype. Clin Immunol 127(1):1–6. doi:S1521-6616(07)01442-8 [pii]  10.1016/j.clim.2007.12.006 Google Scholar
  138. 138.
    Snyder-Cappione JE, Nixon DF, Loo CP, Chapman JM, Meiklejohn DA, Melo FF, Costa PR, Sandberg JK, Rodrigues DS, Kallas EG (2007) Individuals with pulmonary tuberculosis have lower levels of circulating CD1d-restricted NKT cells. J Infect Dis 195(9):1361–1364. doi:JID37263 [pii]  10.1086/513567 Google Scholar
  139. 139.
    Gansert JL, Kiessler V, Engele M, Wittke F, Rollinghoff M, Krensky AM, Porcelli SA, Modlin RL, Stenger S (2003) Human NKT cells express granulysin and exhibit antimycobacterial activity. J Immunol 170(6):3154–3161PubMedGoogle Scholar
  140. 140.
    Chackerian A, Alt J, Perera V, Behar SM (2002) Activation of NKT cells protects mice from tuberculosis. Infect Immun 70(11):6302–6309PubMedCrossRefGoogle Scholar
  141. 141.
    Sada-Ovalle I, Skold M, Tian T, Besra GS, Behar SM (2010) Alpha-galactosylceramide as a therapeutic agent for pulmonary Mycobacterium tuberculosis infection. Am J Respir Crit Care Med 182(6):841–847. doi:200912-1921OC [pii]  10.1164/rccm.200912-1921OC Google Scholar
  142. 142.
    Venkataswamy MM, Baena A, Goldberg MF, Bricard G, Im JS, Chan J, Reddington F, Besra GS, Jacobs WR Jr, Porcelli SA (2009) Incorporation of NKT cell-activating glycolipids enhances immunogenicity and vaccine efficacy of Mycobacterium bovis bacillus Calmette-Guerin. J Immunol 183(3):1644–1656. doi:183/3/1644 [pii]  10.4049/jimmunol.0900858 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pooja Arora
    • 1
  • Erin L. Foster
    • 1
  • Steven A. Porcelli
    • 1
    • 2
    Email author
  1. 1.Department of Microbiology and ImmunologyAlbert Einstein College of MedicineBronxUSA
  2. 2.Department of MedicineAlbert Einstein College of MedicineBronxUSA

Personalised recommendations