Skip to main content

CD1a, CD1b, and CD1c in Immunity Against Mycobacteria

  • Chapter
  • First Online:
The New Paradigm of Immunity to Tuberculosis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 783))

Abstract

The CD1 system is composed of five types of human CD1 proteins, CD1a, CD1b, CD1c, CD1d, and CD1e, and their mammalian orthologs. Each type of CD1 protein has a distinct antigen binding groove and shows differing patterns of expression within cells and in different tissues. Here we review the molecular mechanisms by which CD1a, CD1b, and CD1c capture distinct classes of self- and mycobacterial antigens. We discuss how CD1-restricted T cells participate in the immune response, emphasizing new evidence for mycobacterial recognition in vivo in human and non-human models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calabi F, Jarvis JM, Martin L, Milstein C (1989) Two classes of CD1 genes. Eur J Immunol 19:285–292

    Article  PubMed  CAS  Google Scholar 

  2. Roura-Mir C, Wang L, Cheng TY, Matsunaga I, Dascher CC, Peng SL, Fenton MJ, Kirschning C, Moody DB (2005) Mycobacterium tuberculosis regulates CD1 antigen presentation pathways through TLR-2. J Immunol 175:1758–1766

    PubMed  CAS  Google Scholar 

  3. Matsuda JL, Mallevaey T, Scott-Browne J, Gapin L (2008) CD1d-restricted iNKT cells, the ‘Swiss-Army knife’ of the immune system. Curr Opin Immunol 20:358–368

    Article  PubMed  CAS  Google Scholar 

  4. Stronge VS, Salio M, Jones EY, Cerundolo V (2007) A closer look at CD1d molecules: new horizons in studying NKT cells. Trends Immunol 28:455–462

    Article  PubMed  CAS  Google Scholar 

  5. Young MH, Gapin L (2011) Group 1 CD1-restricted T cells take center stage. Eur J Immunol 41:592–594

    Article  PubMed  CAS  Google Scholar 

  6. Dougan SK, Kaser A, Blumberg RS (2007) CD1 expression on antigen-presenting cells. Curr Top Microbiol Immunol 314:113–141

    Article  PubMed  CAS  Google Scholar 

  7. de Jong A, Pena-Cruz V, Cheng TY, Clark RA, van Rhijn I, Moody DB (2010) CD1a-autoreactive T cells are a normal component of the human alphabeta T cell repertoire. Nat Immunol 11:1102–1109

    Article  PubMed  Google Scholar 

  8. Dascher CC, Brenner MB (2003) Evolutionary constraints on CD1 structure: insights from comparative genomic analysis. Trends Immunol 24:412–418

    Article  PubMed  CAS  Google Scholar 

  9. Jackman RM, Stenger S, Lee A, Moody DB, Rogers RA, Niazi KR, Sugita M, Modlin RL, Peters PJ, Porcelli SA (1998) The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens. Immunity 8:341–351

    Article  PubMed  CAS  Google Scholar 

  10. Moody DB, Porcelli SA (2003) Intracellular pathways of CD1 antigen presentation. Nat Rev Immunol 3:11–22

    Article  PubMed  CAS  Google Scholar 

  11. Kang SJ, Cresswell P (2002) Regulation of intracellular trafficking of human CD1d by association with MHC class II molecules. EMBO J 21:1650–1660

    Article  PubMed  CAS  Google Scholar 

  12. Kaser A, Hava DL, Dougan SK, Chen Z, Zeissig S, Brenner MB, Blumberg RS (2008) Microsomal triglyceride transfer protein regulates endogenous and exogenous antigen presentation by group 1 CD1 molecules. Eur J Immunol 38:2351–2359

    Article  PubMed  CAS  Google Scholar 

  13. Moody DB, Briken V, Cheng TY, Roura-Mir C, Guy MR, Geho DH, Tykocinski ML, Besra GS, Porcelli SA (2002) Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat Immunol 3:435–442

    PubMed  CAS  Google Scholar 

  14. Sugita M, Grant EP, van Donselaar E, Hsu VW, Rogers RA, Peters PJ, Brenner MB (1999) Separate pathways for antigen presentation by CD1 molecules. Immunity 11:743–752

    Article  PubMed  CAS  Google Scholar 

  15. van Rhijn I, Young DC, de Jong A, Vazquez J, Cheng TY, Talekar R, Barral DC, Leon L, Brenner MB, Katz JT, Riese R, Ruprecht RM, O’Connor PB, Costello CE, Porcelli SA, Briken V, Moody DB (2009) CD1c bypasses lysosomes to present a lipopeptide antigen with 12 amino acids. J Exp Med 206:1409–1422

    Article  PubMed  Google Scholar 

  16. Zeissig S, Dougan SK, Barral DC, Junker Y, Chen Z, Kaser A, Ho M, Mandel H, McIntyre A, Kennedy SM, Painter GF, Veerapen N, Besra GS, Cerundolo V, Yue S, Beladi S, Behar SM, Chen X, Gumperz JE, Breckpot K, Raper A, Baer A, Exley MA, Hegele RA, Cuchel M, Rader DJ, Davidson NO, Blumberg RS (2010) Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function. J Clin Invest 120:2889–2899

    Article  PubMed  CAS  Google Scholar 

  17. Porcelli S, Morita CT, Brenner MB (1992) CD1b restricts the response of human CD4-8-T lymphocytes to a microbial antigen. Nature 360:593–597

    Article  PubMed  CAS  Google Scholar 

  18. Manolova V, Kistowska M, Paoletti S, Baltariu GM, Bausinger H, Hanau D, Mori L, de Libero G (2006) Functional CD1a is stabilized by exogenous lipids. Eur J Immunol 36:1083–1092

    Article  PubMed  CAS  Google Scholar 

  19. Zajonc DM, Elsliger MA, Teyton L, Wilson IA (2003) Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 A. Nat Immunol 4:808–815

    Article  PubMed  CAS  Google Scholar 

  20. Barral DC, Cavallari M, McCormick PJ, Garg S, Magee AI, Bonifacino JS, de Libero G, Brenner MB (2008) CD1a and MHC class I follow a similar endocytic recycling pathway. Traffic 9:1446–1457

    Article  PubMed  CAS  Google Scholar 

  21. Madigan CA, Cheng TY, Layre E, Young DC, McConnell MJ, Debono CA, Murry JP, Wei JR, Barry CE 3rd, Rodriguez GM, Matsunaga I, Rubin EJ, Moody DB (2012) Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 109:1257–1262

    Article  PubMed  CAS  Google Scholar 

  22. Moody DB, Young DC, Cheng TY, Rosat JP, Roura-Mir C, O’Connor PB, Zajonc DM, Walz A, Miller MJ, Levery SB, Wilson IA, Costello CE, Brenner MB (2004) T cell activation by lipopeptide antigens. Science 303:527–531

    Article  PubMed  CAS  Google Scholar 

  23. de Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y, Barry CE 3rd (2000) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A 97:1252–1257

    Article  PubMed  Google Scholar 

  24. Siegrist MS, Unnikrishnan M, McConnell MJ, Borowsky M, Cheng TY, Siddiqi N, Fortune SM, Moody DB, Rubin EJ (2009) Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci U S A 106:18792–18797

    Article  PubMed  Google Scholar 

  25. Zajonc DM, Crispin MD, Bowden TA, Young DC, Cheng TY, Hu J, Costello CE, Rudd PM, Dwek RA, Miller MJ, Brenner MB, Moody DB, Wilson IA (2005) Molecular mechanism of lipopeptide presentation by CD1a. Immunity 22:209–219

    Article  PubMed  CAS  Google Scholar 

  26. de Lalla C, Lepore M, Piccolo FM, Rinaldi A, Scelfo A, Garavaglia C, Mori L, de Libero G, Dellabona P, Casorati G (2010) High-frequency and adaptive-like dynamics of human CD1 self-reactive T cells. Eur J Immunol 41:602–610

    Article  Google Scholar 

  27. Porcelli S, Brenner MB, Greenstein JL, Balk SP, Terhorst C, Bleicher PA (1989) Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. Nature 341:447–450

    Article  PubMed  CAS  Google Scholar 

  28. Vincent MS, Leslie DS, Gumperz JE, Xiong X, Grant EP, Brenner MB (2002) CD1-dependent dendritic cell instruction. Nat Immunol 3:1163–1168

    Article  PubMed  CAS  Google Scholar 

  29. Vincent MS, Xiong X, Grant EP, Peng W, Brenner MB (2005) CD1a-, b-, and c-restricted TCRs recognize both self and foreign antigens. J Immunol 175:6344–6351

    PubMed  CAS  Google Scholar 

  30. Shamshiev A, Donda A, Carena I, Mori L, Kappos L, de Libero G (1999) Self glycolipids as T-cell autoantigens. Eur J Immunol 29:1667–1675

    Article  PubMed  CAS  Google Scholar 

  31. Brigl M, Tatituri RV, Watts GF, Bhowruth V, Leadbetter EA, Barton N, Cohen NR, Hsu FF, Besra GS, Brenner MB (2011) Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J Exp Med 208:1163–1177

    Article  PubMed  CAS  Google Scholar 

  32. Batuwangala T, Shepherd D, Gadola SD, Gibson KJ, Zaccai NR, Fersht AR, Besra GS, Cerundolo V, Jones EY (2004) The crystal structure of human CD1b with a bound bacterial glycolipid. J Immunol 172:2382–2388

    PubMed  CAS  Google Scholar 

  33. Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB (1994) Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells. Nature 372:691–694

    Article  PubMed  CAS  Google Scholar 

  34. Garcia-Alles LF, Collmann A, Versluis C, Lindner B, Guiard J, Maveyraud L, Huc E, Im JS, Sansano S, Brando T, Julien S, Prandi J, Gilleron M, Porcelli SA, de la Salle H, Heck AJ, Mori L, Puzo G, Mourey L, de Libero G (2011) Structural reorganization of the antigen-binding groove of human CD1b for presentation of mycobacterial sulfoglycolipids. Proc Natl Acad Sci U S A 108:17755–17760

    Article  PubMed  CAS  Google Scholar 

  35. Guiard J, Collmann A, Garcia-Alles LF, Mourey L, Brando T, Mori L, Gilleron M, Prandi J, de Libero G, Puzo G (2009) Fatty acyl structures of mycobacterium tuberculosis sulfoglycolipid govern T cell response. J Immunol 182:7030–7037

    Article  PubMed  CAS  Google Scholar 

  36. Layre E, Collmann A, Bastian M, Mariotti S, Czaplicki J, Prandi J, Mori L, Stenger S, de Libero G, Puzo G, Gilleron M (2009) Mycolic acids constitute a scaffold for mycobacterial lipid antigens stimulating CD1-restricted T cells. Chem Biol 16:82–92

    Article  PubMed  CAS  Google Scholar 

  37. Moody DB, Reinhold BB, Guy MR, Beckman EM, Frederique DE, Furlong ST, Ye S, Reinhold VN, Sieling PA, Modlin RL, Besra GS, Porcelli SA (1997) Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278:283–286

    Article  PubMed  CAS  Google Scholar 

  38. Moody DB, Zajonc DM, Wilson IA (2005) Anatomy of CD1-lipid antigen complexes. Nat Rev Immunol 5:387–399

    Article  PubMed  CAS  Google Scholar 

  39. Huang S, Cheng TY, Young DC, Layre E, Madigan CA, Shires J, Cerundolo V, Altman JD, Moody DB (2011) Discovery of deoxyceramides and diacylglycerols as CD1b scaffold lipids among diverse groove-blocking lipids of the human CD1 system. Proc Natl Acad Sci U S A 108:19335–19340

    Article  PubMed  CAS  Google Scholar 

  40. Gilleron M, Stenger S, Mazorra Z, Wittke F, Mariotti S, Bohmer G, Prandi J, Mori L, Puzo G, de Libero G (2004) Diacylated Sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T Cells during infection with mycobacterium tuberculosis. J Exp Med 199:649–659

    Article  PubMed  CAS  Google Scholar 

  41. de la Salle H, Mariotti S, Angenieux C, Gilleron M, Garcia-Alles LF, Malm D, Berg T, Paoletti S, Maitre B, Mourey L, Salamero J, Cazenave JP, Hanau D, Mori L, Puzo G, de Libero G (2005) Assistance of microbial glycolipid antigen processing by CD1e. Science 310:1321–1324

    Article  PubMed  Google Scholar 

  42. Ernst WA, Maher J, Cho S, Niazi KR, Chatterjee D, Moody DB, Besra GS, Watanabe Y, Jensen PE, Porcelli SA, Kronenberg M, Modlin RL (1998) Molecular interaction of CD1b with lipoglycan antigens. Immunity 8:331–340

    Article  PubMed  CAS  Google Scholar 

  43. Gadola SD, Zaccai NR, Harlos K, Shepherd D, Castro-Palomino JC, Ritter G, Schmidt RR, Jones EY, Cerundolo V (2002) Structure of human CD1b with bound ligands at 2.3 A, a maze for alkyl chains. Nat Immunol 3:721–726

    Article  PubMed  CAS  Google Scholar 

  44. Garcia-Alles LF, Versluis K, Maveyraud L, Vallina AT, Sansano S, Bello NF, Gober HJ, Guillet V, de la Salle H, Puzo G, Mori L, Heck AJ, de Libero G, Mourey L (2006) Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid-binding groove of CD1b. EMBO J 25:3684–3692

    Article  PubMed  CAS  Google Scholar 

  45. de Libero G, Mori L (2007) Structure and biology of self lipid antigens. Curr Top Microbiol Immunol 314:51–72

    Article  PubMed  Google Scholar 

  46. Sieling PA, Chatterjee D, Porcelli SA, Prigozy TI, Mazzaccaro RJ, Soriano T, Bloom BR, Brenner MB, Kronenberg M, Brennan PJ (1995) CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269:227–230

    Article  PubMed  CAS  Google Scholar 

  47. Relloso M, Cheng TY, Im JS, Parisini E, Roura-Mir C, Debono C, Zajonc DM, Murga LF, Ondrechen MJ, Wilson IA, Porcelli SA, Moody DB (2008) pH-dependent interdomain tethers of CD1b regulate its antigen capture. Immunity 28:774–786

    Article  PubMed  CAS  Google Scholar 

  48. Hunger RE, Sieling PA, Ochoa MT, Sugaya M, Burdick AE, Rea TH, Brennan PJ, Belisle JT, Blauvelt A, Porcelli SA, Modlin RL (2004) Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J Clin Invest 113:701–708

    PubMed  CAS  Google Scholar 

  49. Prigozy TI, Sieling PA, Clemens D, Stewart PL, Behar SM, Porcelli SA, Brenner MB, Modlin RL, Kronenberg M (1997) The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6:187–197

    Article  PubMed  CAS  Google Scholar 

  50. Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL, Hagens K, Modlin RL, Brinkmann V, Kaufmann SH (2003) Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med 9:1039–1046

    Article  PubMed  CAS  Google Scholar 

  51. Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A, Legres L, Dreher D, Nicod LP, Gluckman JC, Lagrange PH, Gicquel B, Neyrolles O (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197:121–127

    Article  PubMed  CAS  Google Scholar 

  52. van den Elzen P, Garg S, Leon L, Brigl M, Leadbetter EA, Gumperz JE, Dascher CC, Cheng TY, Sacks FM, Illarionov PA, Besra GS, Kent SC, Moody DB, Brenner MB (2005) Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437:906–910

    Article  PubMed  Google Scholar 

  53. Kasmar AG, van Rhijn I, Cheng TY, Turner M, Seshadri C, Schiefner A, Kalathur RC, Annand JW, de Jong A, Shires J, Leon L, Brenner M, Wilson IA, Altman JD, Moody DB (2011) CD1b tetramers bind {alpha} {beta} T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. J Exp Med 208:1741–1747

    Article  PubMed  CAS  Google Scholar 

  54. Montamat-Sicotte DJ, Millington KA, Willcox CR, Hingley-Wilson S, Hackforth S, Innes J, Kon OM, Lammas DA, Minnikin DE, Besra GS, Willcox BE, Lalvani A (2011) A mycolic acid-specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. J Clin Invest 121:2493–2503

    Article  PubMed  CAS  Google Scholar 

  55. Ulrichs T, Moody DB, Grant E, Kaufmann SH, Porcelli SA (2003) T-cell responses to CD1-presented lipid antigens in humans with Mycobacterium tuberculosis infection. Infect Immun 71:3076–3087

    Article  PubMed  CAS  Google Scholar 

  56. van Rhijn I, Nguyen TK, Michel A, Cooper D, Govaerts M, Cheng TY, van Eden W, Moody DB, Coetzer JA, Rutten V, Koets AP (2009) Low cross-reactivity of T-cell responses against lipids from Mycobacterium bovis and M. avium paratuberculosis during natural infection. Eur J Immunol 39:3031–3041

    Article  PubMed  Google Scholar 

  57. Spada FM, Grant EP, Peters PJ, Sugita M, Melian A, Leslie DS, Lee HK, van Donselaar E, Hanson DA, Krensky AM, Majdic O, Porcelli SA, Morita CT, Brenner MB (2000) Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J Exp Med 191:937–948

    Google Scholar 

  58. Briken V, Jackman RM, Watts GF, Rogers RA, Porcelli SA (2000) Human CD1b and CD1c isoforms survey different intracellular compartments for the presentation of microbial lipid antigens. J Exp Med 192:281–288

    Article  PubMed  CAS  Google Scholar 

  59. Sugita M, van Der WN, Rogers RA, Peters PJ, Brenner MB (2000) CD1c molecules broadly survey the endocytic system. Proc Natl Acad Sci USA 97:8445–8450

    Article  PubMed  CAS  Google Scholar 

  60. Beckman EM, Melian A, Behar SM, Sieling PA, Chatterjee D, Furlong ST, Matsumoto R, Rosat JP, Modlin RL, Porcelli SA (1996) CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second member of the human CD1 family. J Immunol 157:2795–2803

    PubMed  CAS  Google Scholar 

  61. Moody DB, Ulrichs T, Muhlecker W, Young DC, Gurcha SS, Grant E, Rosat JP, Brenner MB, Costello CE, Besra GS, Porcelli SA (2000) CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 20(404):884–888

    Article  Google Scholar 

  62. Matsunaga I, Bhatt A, Young DC, Cheng TY, Eyles SJ, Besra GS, Briken V, Porcelli SA, Costello CE, Jacobs WR Jr, Moody DB (2004) Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells. J Exp Med 200:1559–1569

    Article  PubMed  CAS  Google Scholar 

  63. de Jong A, Arce EC, Cheng TY, van Summeren RP, Feringa BL, Dudkin V, Crich D, Matsunaga I, Minnaard AJ, Moody DB (2007) CD1c presentation of synthetic glycolipid antigens with foreign alkyl branching motifs. Chem Biol 14:1232–1242

    Article  PubMed  Google Scholar 

  64. Scharf L, Li NS, Hawk AJ, Garzon D, Zhang T, Fox LM, Kazen AR, Shah S, Haddadian EJ, Gumperz JE, Saghatelian A, Faraldo-Gomez JD, Meredith SC, Piccirilli JA, Adams EJ (2010) The 2.5 a structure of CD1c in complex with a mycobacterial lipid reveals an open groove ideally suited for diverse antigen presentation. Immunity 33:853–862

    Article  PubMed  CAS  Google Scholar 

  65. Hiromatsu K, Dascher CC, Leclair KP, Sugita M, Furlong ST, Brenner MB, Porcelli SA (2002) Induction of CD1-restricted immune responses in guinea pigs by immunization with mycobacterial lipid antigens. J Immunol 169:330–339

    PubMed  CAS  Google Scholar 

  66. Watanabe Y, Watari E, Matsunaga I, Hiromatsu K, Dascher CC, Kawashima T, Norose Y, Shimizu K, Takahashi H, Yano I, Sugita M (2006) BCG vaccine elicits both T-cell mediated and humoral immune responses directed against mycobacterial lipid components. Vaccine 24:5700–5707

    Article  PubMed  CAS  Google Scholar 

  67. Dascher CC, Hiromatsu K, Xiong X, Morehouse C, Watts G, Liu G, McMurray DN, Leclair KP, Porcelli SA, Brenner MB (2003) Immunization with a mycobacterial lipid vaccine improves pulmonary pathology in the guinea pig model of tuberculosis. Int Immunol 15:915–925

    Article  PubMed  CAS  Google Scholar 

  68. Nguyen TK, Koets AP, Santema WJ, van Eden W, Rutten VP, van Rhijn I (2009) The mycobacterial glycolipid glucose monomycolate induces a memory T cell response comparable to a model protein antigen and no B cell response upon experimental vaccination of cattle. Vaccine 27:4818–4825

    Article  PubMed  CAS  Google Scholar 

  69. Felio K, Nguyen H, Dascher CC, Choi HJ, Li S, Zimmer MI, Colmone A, Moody DB, Brenner MB, Wang CR (2009) CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice. J Exp Med 206:2497–2509

    Article  PubMed  CAS  Google Scholar 

  70. Lockridge JL, Chen X, Zhou Y, Rajesh D, Roenneburg DA, Hegde S, Gerdts S, Cheng TY, Anderson RJ, Painter GF, Moody DB, Burlingham WJ, Gumperz JE (2011) Analysis of the CD1 antigen presenting system in humanized SCID mice. PLoS ONE 6:e21701

    Article  PubMed  CAS  Google Scholar 

  71. Li D, Hong A, Lu Q, Gao GF, Jin B, Screaton GR, Xu XN (2012) A novel role of CD1c in regulating CD1d-mediated NKT cell recognition by competitive binding to Ig-like transcript 4. Int Immunol 24(11):729–737

    Google Scholar 

  72. Li D, Wang L, Yu L, Freundt EC, Jin B, Screaton GR, Xu XN (2009) Ig-like transcript 4 inhibits lipid antigen presentation through direct CD1d interaction. J Immunol 182:1033–1040

    PubMed  CAS  Google Scholar 

  73. Ochoa MT, Stenger S, Sieling PA, Thoma-Uszynski S, Sabet S, Cho S, Krensky AM, Rollinghoff M, Nunes Sarno E, Burdick AE, Rea TH, Modlin RL (2001) T-cell release of granulysin contributes to host defense in leprosy. Nat Med 7:174–179

    Article  PubMed  CAS  Google Scholar 

  74. Sieling PA, Ochoa MT, Jullien D, Leslie DS, Sabet S, Rosat JP, Burdick AE, Rea TH, Brenner MB, Porcelli SA, Modlin RL (2000) Evidence for human CD4+ T cells in the CD1-restricted repertoire: derivation of mycobacteria-reactive T cells from leprosy lesions. J Immunol 164:4790–4796

    PubMed  CAS  Google Scholar 

  75. Stenger S, Mazzaccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, Sette A, Brenner MB, Porcelli SA, Bloom BR, Modlin RL (1997) Differential effects of cytolytic T cell subsets on intracellular infection. Science 276:1684–1687

    Article  PubMed  CAS  Google Scholar 

  76. Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, Ganz T, Thoma-Uszynski S, Melian A, Bogdan C, Porcelli SA, Bloom BR, Krensky AM, Modlin RL (1998) An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282:121–125

    Article  PubMed  CAS  Google Scholar 

  77. Behar SM, Podrebarac TA, Roy CJ, Wang CR, Brenner MB (1999) Diverse TCRs recognize murine CD1. J Immunol 162:161–167

    PubMed  CAS  Google Scholar 

  78. Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V (2004) Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 199:947–957

    Article  PubMed  CAS  Google Scholar 

  79. van Rhijn I, Young DC, Im JS, Levery SB, Illarionov PA, Besra GS, Porcelli SA, Gumperz J, Cheng TY, Moody DB (2004) CD1d-restricted T cell activation by nonlipidic small molecules. Proc Natl Acad Sci U S A 101:13578–13583

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ildiko Van Rhijn or D. Branch Moody .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van Rhijn, I., Ly, D., Moody, D.B. (2013). CD1a, CD1b, and CD1c in Immunity Against Mycobacteria. In: Divangahi, M. (eds) The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, vol 783. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6111-1_10

Download citation

Publish with us

Policies and ethics