Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1107 Accesses

Abstract

Chapter 7 discusses a scheme to perform 3D ground-state cooling of a optically trapped nanosphere with a single cavity, and the potential applications of cooled microspheres in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Mancini, D. Vitali, P. Tombesi, Optomechanical cooling of a macroscopic oscillator by homodyne feedback. Phys. Rev. Lett. 80, 688 (1998)

    Article  ADS  Google Scholar 

  2. C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008)

    Article  ADS  Google Scholar 

  3. P.F. Cohadon, A. Heidmann, M. Pinard, Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174 (1999)

    Article  ADS  Google Scholar 

  4. T.J. Kippenberg, K.J. Vahala, Cavity optomechanics: back-action at the mesoscale. Science 321, 1172 (2008)

    Article  ADS  Google Scholar 

  5. M. Aspelmeyer, S. Gröblacher, K. Hammerer, N. Kiesel, Quantum optomechanics - throwing a glance. J. Opt. Soc. Am. B 27, A189 (2010)

    Article  ADS  Google Scholar 

  6. I. Wilson-Rae, N. Nooshi, W. Zwerger, T.J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    Article  ADS  Google Scholar 

  7. F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  8. C.H. Metzger, K. Karrai, Cavity cooling of a microlever. Nature 432, 1002 (2004)

    Article  ADS  Google Scholar 

  9. A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193 (2006)

    Article  ADS  Google Scholar 

  10. S. Gigan et al., Self-cooling of a micromirror by radiation pressure. Nature 444, 67 (2006)

    Article  ADS  Google Scholar 

  11. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71 (2006)

    Article  ADS  Google Scholar 

  12. D. Kleckner, D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75 (2006)

    Article  ADS  Google Scholar 

  13. J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008)

    Article  ADS  Google Scholar 

  14. S. Gröblacher et al., Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nature Phys. 5, 485 (2009)

    Article  ADS  Google Scholar 

  15. Y.S. Park, H. Wang, Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nature Phys. 5, 489 (2009)

    Article  ADS  Google Scholar 

  16. A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, T.J. Kippenberg, Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature Phys. 5, 509 (2009)

    Article  ADS  Google Scholar 

  17. T. Rocheleau et al., Preparation and detection of a mechanical resonator near the ground state of motion. Nature 463, 72 (2010)

    Article  ADS  Google Scholar 

  18. J.D. Teufel et al. Sideband cooling micromechanical motion to the quantum ground state (2011), http://arxiv.org/abs/1103.2144.

  19. D.E. Chang et al., Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. U.S.A 107, 1005 (2010)

    Article  ADS  Google Scholar 

  20. O. Romero-Isart, M.L. Juan, R. Quidant, J. Ignacio Cirac, Toward quantum superposition of living organisms. New J. Phys. 12, 033015 (2010)

    Article  ADS  Google Scholar 

  21. P.F. Barker, M.N. Shneider, Cavity cooling of an optically trapped nanoparticle. Phys. Rev. A 81, 023826 (2010)

    Article  ADS  Google Scholar 

  22. S. Singh, G.A. Phelps, D.S. Goldbaum, E.M. Wright, P. Meystre, All-optical optomechanics: an optical spring mirror. Phys. Rev. Lett. 105, 213602 (2010)

    Article  ADS  Google Scholar 

  23. R.J. Schulze, C. Genes, H. Ritsch, Optomechanical approach to cooling of small polarizable particles in a strongly pumped ring cavity. Phys. Rev. A 81, 063820 (2010)

    Article  ADS  Google Scholar 

  24. P.F. Barker, Doppler cooling a microsphere. Phys. Rev. Lett. 105, 073002 (2010)

    Article  ADS  Google Scholar 

  25. O. Romero-Isart, A.C. Pflanzer, M.L. Juan, R. Quidant, N. Kiesel, M. Aspelmeyer, J.I. Cirac, Optically levitating dielectrics in the quantum regime: theory and protocools. Phys. Rev. A 83, 013803 (2011)

    Article  ADS  Google Scholar 

  26. Z.-Q. Yin, T. Li, M. Feng, Three dimensional cooling and detection of a nanosphere with a single cavity. Phys. Rev. A 83, 013816 (2011)

    Article  ADS  Google Scholar 

  27. P. Horak, G. Hechenblaikner, K.M. Gheri, H. Stecher, H. Ritsch, Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett. 79, 4974 (1997)

    Article  ADS  Google Scholar 

  28. Y. Harada, T. Asakura, Radiation forces on a dielectric sphere in the rayleigh scattering regime. Optics Comm. 124, 529 (1996)

    Article  ADS  Google Scholar 

  29. T.P. Meyrath, F. Schreck, J.L. Hanssen, C.-S. Chuu, M.G. Raizen, A high frequency optical trap for atoms using Hermite-Gaussian beams. Opt. Express 13, 2843 (2005)

    Article  ADS  Google Scholar 

  30. T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P.W.H. Pinkse, G. Rempe, Trapping and observing single atoms in a blue-detuned intracavity dipole trap. Phys. Rev. Lett. 99, 013002 (2007)

    Article  ADS  Google Scholar 

  31. P. Zhang, Y. Guo, Z. Li, Y. Zhang, Y. Zhang, J. Du, G. Li, J. Wang, T. Zhang, Elimination of the degenerate trajectory of a single atom strongly coupled to a tilted TEM\(_{10}\) cavity mode. Phys. Rev. A 83, 031804(R) (2011)

    ADS  Google Scholar 

  32. A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Introduction to quantum noise, measurement and amplification. Rev. Mod. Phys. 82, 1155 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. T.A. Savard, K.M. O’Hara, J.E. Thomas, Laser-noise-induced heating in far-off resonance optical traps. Phys. Rev. A 56, R1095 (1997)

    Article  ADS  Google Scholar 

  34. T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, N. Mavalvala, Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801 (2007)

    Article  ADS  Google Scholar 

  35. L. Diósi, Laser linewidth hazard in optomechanical cooling. Phys. Rev. A 78, 021801(R) (2008)

    Article  ADS  Google Scholar 

  36. P. Rabl, C. Genes, K. Hammerer, M. Aspelmeyer, Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems. Phys. Rev. A 80, 063819 (2009)

    Article  ADS  Google Scholar 

  37. Zhang-qi Yin, Phase noise and laser-cooling limits of optomechanical oscillators. Phys. Rev. A 80, 033821 (2009)

    Article  ADS  Google Scholar 

  38. R.M. Simmons, J.T. Finer, S. Chu, J.A. Spudich, Quantitative measurements of force and displacement using an optical trap. Biophys. J. 70, 1813 (1996)

    Article  ADS  Google Scholar 

  39. S.C. Kuo, M.P. Sheetz, Force of single kinesin molecules measured with optical tweezers. Science 260, 232 (1993)

    Article  ADS  Google Scholar 

  40. U. Bockelmann, Ph. Thomen, B. Essevaz-Roulet, V. Viasnoff, F. Heslot, Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys. J. 82, 1537 (2002)

    Google Scholar 

  41. S. Kuehn, S.A. Hickman, J.A. Marohn, Advances in mechanical detection of magnetic resonance. J. Chem. Phys. 128, 052208 (2008)

    Article  ADS  Google Scholar 

  42. J.L. Garbini, K.J. Bruland, W.M. Dougherty, J.A. Sidles, Optimal control of force microscope cantilevers. I. controller design. J. Appl. Phys. 80, 1951 (1996)

    ADS  Google Scholar 

  43. A.A. Geraci, S.B. Papp, J. Kitching, Short-range force detection using optically cooled levitated microspheres. Phys. Rev. Lett. 105, 101101 (2010)

    Article  ADS  Google Scholar 

  44. R. Penrose, On gravity’s role in quantum state reduction. Gen. Rel. Grav. 28, 581 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. J. van Wezel, T. Oosterkamp, J. Zaanen, Towards an experimental test of gravity-induced quantum state reduction. Phil. Mag. 88, 1005 (2008)

    Article  ADS  Google Scholar 

  46. O. Romero-Isart, A.C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, J. I. Cirac. Large quantum superpositions and interference of massive nano-objects (2011), http://arxiv.org/abs/1103.4081

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongcang Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, T. (2013). Towards Quantum Ground-State Cooling. In: Fundamental Tests of Physics with Optically Trapped Microspheres. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6031-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6031-2_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6030-5

  • Online ISBN: 978-1-4614-6031-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics