Optical Trapping of Glass Microspheres in Air and Vacuum

Part of the Springer Theses book series (Springer Theses)


Chapter 3 provides the details of launching glass microspheres to air, and trapping microspheres in air and vacuum with a counter-propagating dual-beam optical tweezer. It also describes the vacuum system and the first generation of our detection system.


Ultrasonic Vibration Gradient Force Ultrasonic Transducer Ultrasonic Power Optical Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Ashkin, J.M. Dziedzic, Optical levitation by radiation pressure. Appl. Phys. Lett. 19, 283 (1971)ADSCrossRefGoogle Scholar
  2. 2.
    A. Ashkin, J.M. Dziedzic, Optical levitation in high vacuum. Appl. Phys. Lett. 28, 333 (1976)ADSCrossRefGoogle Scholar
  3. 3.
    R. Omori, T. Kobayashi, A. Suzuki, Observation of a single-beam gradient-force optical trap for dielectric particle in air. Opt. Lett. 22, 816 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    K.C. Neuman, S.M. Block, Optical trapping. Rev. Sci. Instrum. 75, 2787 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314 (1975)CrossRefGoogle Scholar
  7. 7.
    L.-O. Heim, J. Blum, M. Preuss, H.-J. Butt, Adhesion and friction forces between spherical micrometer-sized particles. Phys. Rev. Lett. 83, 3328 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    M. Paajanen, J. Katainen, O.H. Pakarinen, A.S. Foster, J. Lahtinen, Experimental humidity dependency of small particle adhesion on silica and titania. J. Colloid Interface Sci. 304, 518 (2006)CrossRefGoogle Scholar
  9. 9.
    A.A. Busnaina, H. Lin, N. Moumen, J.-W. Feng, J. Taylor, Particle adhesion and removal mechanisms in post-CMP cleaning processes. IEEE Transac. semicond. manuf. 15, 374 (2002)CrossRefGoogle Scholar
  10. 10.
    S.W. Or, H.L.W. Chan, Mode coupling in lead zirconate titanate/epoxy 1–3 piezocomposite rings. J. Appl. Phys. 90, 4122 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    A. Ashkin, Applications of laser radiation pressure. Science 210, 1081 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    A. van der Horst, High-refractive index particles in counter-propagating optical tweezers—manipulation and forces, Ph.D thesis, Utrecht University (2006)Google Scholar
  13. 13.
    Y. Roichman, B. Sun, A. Stolarski, D.G. Grier, Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: the fountain of probability. Phys. Rev. Lett. 101, 128301 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    P. Wu, R. Huang, C. Tischer, A. Jonas, E.-L. Florin, Direct measurement of the nonconservative force field generated by optical tweezers. Phys. Rev. Lett. 103, 108101 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    A. Pralle, M. Prummer, E.-L. Florin, E.H.K. Stelzer, J.K.H. Hörber, Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Micros. res. tech. 44, 378 (1999)CrossRefGoogle Scholar
  16. 16.
    D.M. Hoffman, B. Singh, J.H. Thomas III, Handbook of vacuum science and technology, p. 237 (Academic Press, London, 1998)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.NSF Nanoscale Science and Engineering CenterUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations