Advertisement

Cancer Predisposition Syndromes of the Gastrointestinal Tract

  • Ian S. Hagemann
  • Antonia R. SepulvedaEmail author
Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 7)

Abstract

Cancer predisposition syndromes affecting the gastrointestinal (GI) tract represent a small proportion of GI cancers and may arise in the background of a polyposis syndrome. The molecular mechanisms underlying these syndromes have been instrumental in our understanding of the molecular basis of development and progression of the more frequent counterpart sporadic neoplasms, sharing many common molecular features. Syndromic hereditary cancers can involve any segment of the GI tract but predominantly involve the colon, and the most common cancers are colorectal adenocarcinomas (CRC). The most frequent inheritable GI cancer syndromes are those associated with germline mutations in the DNA mismatch repair (MMR) genes, in which case cancers do not arise in a polyposis background, and those attributed to underlying germline mutations in the APC or MYH genes in patients who manifest an adenomatous polyposis phenotype in the intestine. In addition to the well-characterized cancer syndromes, there are families with clustering of colon cancer, including patients with colon cancers before age 50, for whom the susceptibility gene loci have not been identified.

Keywords

Germline Mutation Familial Adenomatous Polyposis Adenomatous Polyposis Coli Lynch Syndrome Familial Adenomatous Polyposis Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boland CR. Evolution of the nomenclature for the hereditary ­colorectal cancer syndromes. Fam Cancer. 2005;4:211–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Llor X, Pons E, Xicola RM, et al. Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin Cancer Res. 2005;11:7304–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Boland CR, Shike M. Report from the Jerusalem workshop on Lynch syndrome-hereditary nonpolyposis colorectal cancer. Gastroenterology. 2010;138(2197):e1–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Boland CR. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet. 2009;76:1–18.PubMedCrossRefGoogle Scholar
  5. 5.
    Umar A. Lynch syndrome (HNPCC) and microsatellite instability. Dis Markers. 2004;20:179–80.PubMedGoogle Scholar
  6. 6.
    Peltomaki P. Deficient DNA, mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet. 2001;10:735–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Lynch HT, Lanspa SJ, Boman BM, et al. Hereditary nonpolyposis colorectal cancer–Lynch syndromes I and II. Gastroenterol Clin North Am. 1988;17:679–712.PubMedGoogle Scholar
  8. 8.
    Terdiman JP. HNPCC: an uncommon but important diagnosis. Gastroenterology. 2001;121:1005–8.PubMedGoogle Scholar
  9. 9.
    Lin KM, Shashidharan M, Thorson AG, et al. Cumulative incidence of colorectal and extracolonic cancers in MLH1 and MSH2 mutation carriers of hereditary nonpolyposis colorectal cancer. J Gastrointest Surg. 1998;2:67–71.PubMedCrossRefGoogle Scholar
  10. 10.
    Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116:1453–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Young J, Simms LA, Biden KG, et al. Features of colorectal cancers with high-level microsatellite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis. Am J Pathol. 2001;159:2107–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Gologan A, Sepulveda AR. Microsatellite instability and DNA mismatch repair deficiency testing in hereditary and sporadic gastrointestinal cancers. Clin Lab Med. 2005;25:179–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Kim H, Jen J, Vogelstein B, Hamilton SR. Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol. 1994;145:148–56.PubMedGoogle Scholar
  14. 14.
    Alexander J, Watanabe T, Wu TT, Rashid A, Li S, Hamilton SR. Histopathological identification of colon cancer with microsatellite instability. Am J Pathol. 2001;158:527–35.PubMedCrossRefGoogle Scholar
  15. 15.
    Dolcetti R, Viel A, Doglioni C, et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol. 1999;154:1805–13.PubMedCrossRefGoogle Scholar
  16. 16.
    Greenson JK, Bonner JD, Ben-Yzhak O, et al. Phenotype of microsatellite unstable colorectal carcinomas: Well-differentiated and focally mucinous tumors and the absence of dirty necrosis correlate with microsatellite instability. Am J Surg Pathol. 2003;27: 563–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Jass JR. Pathology of hereditary nonpolyposis colorectal cancer. Ann N Y Acad Sci. 2000;910:62–73. discussion 73–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Gologan A, Krasinskas A, Hunt J, Thull DL, Farkas L, Sepulveda AR. Performance of the revised Bethesda guidelines for identification of colorectal carcinomas with a high level of microsatellite instability. Arch Pathol Lab Med. 2005;129:1390–7.PubMedGoogle Scholar
  19. 19.
    De Jong AE, Morreau H, Van Puijenbroek M, et al. The role of mismatch repair gene defects in the development of adenomas in patients with HNPCC. Gastroenterology. 2004;126:42–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Lindgren G, Liljegren A, Jaramillo E, Rubio C, Lindblom A. Adenoma prevalence and cancer risk in familial non-polyposis colorectal cancer. Gut. 2002;50:228–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Jarvinen HJ, Aarnio M, Mustonen H, et al. Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology. 2000;118:829–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Vasen HF, den Hartog Jager FC, Menko FH, Nagengast FM. Screening for hereditary non-polyposis colorectal cancer: a study of 22 kindreds in The Netherlands. Am J Med. 1989;86:278–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Rijcken FE, Hollema H, Kleibeuker JH. Proximal adenomas in hereditary non-polyposis colorectal cancer are prone to rapid malignant transformation. Gut. 2002;50:382–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Bettstetter M, Dechant S, Ruemmele P, et al. Distinction of hereditary nonpolyposis colorectal cancer and sporadic microsatellite-unstable colorectal cancer through quantification of MLH1 methylation by real-time PCR. Clin Cancer Res. 2007;13:3221–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Leach FS, Nicolaides NC, Papadopoulos N, et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993;75:1215–1225.PubMedCrossRefGoogle Scholar
  26. 26.
    Bronner CE, Baker SM, Morrison PT, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature. 1994;368:258–261.PubMedCrossRefGoogle Scholar
  27. 27.
    Nicolaides NC, Papadopoulos N, Liu B, et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature. 1994;371:75–80.PubMedCrossRefGoogle Scholar
  28. 28.
    Berends MJ, Wu Y, Sijmons RH, et al. Molecular and clinical characteristics of MSH6 variants: an analysis of 25 index carriers of a germline variant. Am J Hum Genet. 2002;70:26–37.PubMedCrossRefGoogle Scholar
  29. 29.
    Kariola R, Raevaara TE, Lonnqvist KE, Nystrom-Lahti M. Functional analysis of MSH6 mutations linked to kindreds with putative hereditary non-polyposis colorectal cancer syndrome. Hum Mol Genet. 2002;11:1303–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Buttin BM, Powell MA, Mutch DG, et al. Penetrance and expressivity of MSH6 germline mutations in seven kindreds not ascertained by family history. Am J Hum Genet. 2004;74:1262–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu B, Parsons R, Papadopoulos N, et al. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med. 1996;2:169–174.PubMedCrossRefGoogle Scholar
  32. 32.
    Peltomaki P. DNA mismatch repair and cancer. Mutat Res. 2001;488:77–85.PubMedCrossRefGoogle Scholar
  33. 33.
    Peltomaki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol. 2003;21:1174–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Liu B, Nicolaides C, Markowitz S, et al. Mismatch repair defects in sporadic colorectal cancers with microsatellite instability. Nat Genet. 1995;9:48–55.PubMedCrossRefGoogle Scholar
  35. 35.
    Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96:261–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Lynch HT, Lynch JF. Lynch syndrome: history and current status. Dis Markers. 2004;20:181–98.PubMedGoogle Scholar
  37. 37.
    Goel A, Nguyen TP, Leung HC, et al. De novo constitutional MLH1 epimutations confer early-onset colorectal cancer in two new sporadic Lynch syndrome cases, with derivation of the epimutation on the paternal allele in one. Int J Cancer. 2010;128:869–78.CrossRefGoogle Scholar
  38. 38.
    Kolodner RD, Marsischky GT. Eukaryotic DNA mismatch repair. Curr Opin Genet Dev. 1999;9:89–96.PubMedCrossRefGoogle Scholar
  39. 39.
    Lipkin SM, Wang V, Jacoby R, et al. MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet. 2000;24:27–35.PubMedCrossRefGoogle Scholar
  40. 40.
    Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 1996;10:1433–42.PubMedCrossRefGoogle Scholar
  41. 41.
    Genschel J, Littman SJ, Drummond JT, Modrich P. Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J Biol Chem. 1998;273:19895–901.PubMedCrossRefGoogle Scholar
  42. 42.
    Umar A, Risinger JI, Glaab WE, Tindall KR, Barrett JC, Kunkel TA. Functional overlap in mismatch repair by human MSH3 and MSH6. Genetics. 1998;148:1637–46.PubMedGoogle Scholar
  43. 43.
    Palombo F, Gallinari P, Iaccarino I, et al. GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science. 1995;268:1912–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Marsischky GT, Filosi N, Kane MF, Kolodner R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 1996;10:407–20.PubMedCrossRefGoogle Scholar
  45. 45.
    Sia EA, Kokoska RJ, Dominska M, Greenwell P, Petes TD. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol Cell Biol. 1997;17:2851–8.PubMedGoogle Scholar
  46. 46.
    Lu A-L. Biochemistry of mammalian DNA mismatch repair. Humana Press, 1998Google Scholar
  47. 47.
    Leung WK, Kim JJ, Wu L, Sepulveda JL, Sepulveda AR. Identification of a second MutL DNA mismatch repair complex (hPMS1 and hMLH1) in human epithelial cells. J Biol Chem. 2000;275:15728–15732.PubMedCrossRefGoogle Scholar
  48. 48.
    Raschle M, Marra G, Nystrom-Lahti M, Schar P, Jiricny J. Identification of hMutLbeta, a heterodimer of hMLH1 and hPMS1. J Biol Chem. 1999;274:32368–75.PubMedCrossRefGoogle Scholar
  49. 49.
    Lynch HT, Boman B, Fitzgibbons RJ Jr, Lanspa SJ, Smyrk TC. Hereditary nonpolyposis colon cancer: (Lynch syndrome I and II). A challenge for the clinician. Nebr Med J. 1989;74:2–7.PubMedGoogle Scholar
  50. 50.
    Lynch HT, Drouhard T, Lanspa S, et al. Mutation of an mutL homologue in a Navajo family with hereditary nonpolyposis colorectal cancer. J Natl Cancer Inst. 1994;86:1417–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Lynch HT, Lynch JF. 25 years of HNPCC. Anticancer Res. 1994;14:1617–24.PubMedGoogle Scholar
  52. 52.
    Lynch HT, Lynch JF. Hereditary cancer: family history, diagnosis, molecular genetics, ecogenetics, and management strategies. Biochimie. 2002;84:3–17.PubMedCrossRefGoogle Scholar
  53. 53.
    Bessa X, Balleste B, Andreu M, et al. A prospective, multicenter, population-based study of BRAF mutational analysis for Lynch syndrome screening. Clin Gastroenterol Hepatol. 2008;6:206–14.PubMedCrossRefGoogle Scholar
  54. 54.
    De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11:753–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Deng G, Bell I, Crawley S, et al. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin Cancer Res. 2004;10:191–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Palomaki GE, McClain MR, Melillo S, Hampel HL, Thibodeau SN. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet Med. 2009;11:42–65.PubMedCrossRefGoogle Scholar
  57. 57.
    Vasen HF, Mecklin JP, Khan PM, Lynch HT. The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum. 1991;34:424–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–57.PubMedGoogle Scholar
  59. 59.
    Syngal S, Fox EA, Eng C, Kolodner RD, Garber JE. Sensitivity and specificity of clinical criteria for hereditary non-polyposis colorectal cancer associated mutations in MSH2 and MLH1. J Med Genet. 2000;37:641–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Umar A, Risinger JI, Hawk ET, Barrett JC. Testing guidelines for hereditary non-polyposis colorectal cancer. Nat Rev Cancer. 2004;4:153–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Lindor NM, Petersen GM, Hadley DW, et al. Recommendations for the care of individuals with an inherited predisposition to Lynch syndrome: a systematic review. JAMA. 2006;296:1507–17.PubMedCrossRefGoogle Scholar
  62. 62.
    Hampel H, Frankel WL, Martin E, et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med. 2005;352:1851–60.PubMedCrossRefGoogle Scholar
  63. 63.
    Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med 2009;11:35–41.Google Scholar
  64. 64.
    Hampel H, de la Chapelle A. The search for unaffected individuals with Lynch syndrome: do the ends justify the means? Cancer Prev Res (Phila). 2011;4:1–5.CrossRefGoogle Scholar
  65. 65.
    Suraweera N, Duval A, Reperant M, et al. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology. 2002;123: 1804–11.PubMedCrossRefGoogle Scholar
  66. 66.
    Goel A, Xicola RM, Nguyen TP, et al. Aberrant DNA methylation in hereditary nonpolyposis colorectal cancer without mismatch repair deficiency. Gastroenterology. 2010;138:1854–62.PubMedCrossRefGoogle Scholar
  67. 67.
    Bacher JW, Flanagan LA, Smalley RL, et al. Development of a fluorescent multiplex assay for detection of MSI-High tumors. Dis Markers. 2004;20:237–50.PubMedGoogle Scholar
  68. 68.
    Murphy KM, Zhang S, Geiger T, et al. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J Mol Diagn. 2006;8:305–11.PubMedCrossRefGoogle Scholar
  69. 69.
    Baudhuin LM, Burgart LJ, Leontovich O, Thibodeau SN. Use of microsatellite instability and immunohistochemistry testing for the identification of individuals at risk for Lynch syndrome. Fam Cancer. 2005;4:255–65.PubMedCrossRefGoogle Scholar
  70. 70.
    Watson N, Grieu F, Morris M, et al. Heterogeneous staining for mismatch repair proteins during population-based prescreening for hereditary nonpolyposis colorectal cancer. J Mol Diagn. 2007;9:472–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Peltomaki P. Lynch syndrome genes. Fam Cancer. 2005;4:227–32.PubMedCrossRefGoogle Scholar
  72. 72.
    Salahshor S, Koelble K, Rubio C, Lindblom A. Microsatellite Instability and hMLH1 and hMSH2 expression analysis in familial and sporadic colorectal cancer. Lab Invest. 2001;81:535–41.PubMedCrossRefGoogle Scholar
  73. 73.
    Funkhouser WK Jr, Lubin IM, Monzon FA, et al. Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: a report of the association for molecular pathology. J Mol Diagn. 2012;14:91–103.PubMedCrossRefGoogle Scholar
  74. 74.
    Grady WM. Genetic testing for high-risk colon cancer patients. Gastroenterology. 2003;124:1574–94.PubMedCrossRefGoogle Scholar
  75. 75.
    Mutations MaM. http://www.insight-group.org/ Accessed September 2004.Google Scholar
  76. 76.
    Akiyama Y, Sato H, Yamada T, et al. Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res. 1997;57:3920–3.PubMedGoogle Scholar
  77. 77.
    Iino H, Simms L, Young J, et al. DNA microsatellite instability and mismatch repair protein loss in adenomas presenting in hereditary non-polyposis colorectal cancer. Gut. 2000;47:37–42.PubMedCrossRefGoogle Scholar
  78. 78.
    Hampel H, Stephens JA, Pukkala E, et al. Cancer risk in hereditary nonpolyposis colorectal cancer syndrome: later age of onset. Gastroenterology. 2005;129:415–21.PubMedGoogle Scholar
  79. 79.
    Lindor NM, Rabe K, Petersen GM, et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA. 2005;293:1979–85.PubMedCrossRefGoogle Scholar
  80. 80.
    Guillem JG, Wood WC, Moley JF, et al. ASCO/SSO review of current role of risk-reducing surgery in common hereditary cancer syndromes. J Clin Oncol. 2006;24:4642–60.PubMedCrossRefGoogle Scholar
  81. 81.
    Hampel H, Frankel WL, Martin E, et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol. 2008;26:5783–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Hampel H, Frankel W, Panescu J, et al. Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res. 2006;66:7810–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Hampel H, Panescu J, Lockman J, et al. Comment on: screening for lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res. 2007;67:9603.PubMedCrossRefGoogle Scholar
  84. 84.
    Mvundura M, Grosse SD, Hampel H, Palomaki GE. The cost-effectiveness of genetic testing strategies for Lynch syndrome among newly diagnosed patients with colorectal cancer. Genet Med. 2010;12:93–104.PubMedCrossRefGoogle Scholar
  85. 85.
    Dunlop MG, Farrington SM, Carothers AD, et al. Cancer risk associated with germline DNA mismatch repair gene mutations. Hum Mol Genet. 1997;6:105–10.PubMedCrossRefGoogle Scholar
  86. 86.
    Watson P, Butzow R, Lynch HT, et al. The clinical features of ovarian cancer in hereditary nonpolyposis colorectal cancer. Gynecol Oncol. 2001;82:223–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Aarnio M, Sankila R, Pukkala E, et al. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer. 1999;81:214–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Lynch HT, Boland CR, Gong G, et al. Phenotypic and genotypic heterogeneity in the Lynch syndrome: diagnostic, surveillance and management implications. Eur J Hum Genet. 2006;14:390–402.PubMedCrossRefGoogle Scholar
  89. 89.
    da Silva FC, de Oliveira LP, Santos EM, et al. Frequency of extracolonic tumors in Brazilian families with Lynch syndrome: analysis of a hereditary colorectal cancer institutional registry. Fam Cancer. 2010;9:563–70.PubMedCrossRefGoogle Scholar
  90. 90.
    Vasen HF, Morreau H, Nortier JW. Is breast cancer part of the tumor spectrum of hereditary nonpolyposis colorectal cancer? Am J Hum Genet. 2001;68:1533–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Westenend PJ, Schutte R, Hoogmans MM, Wagner A, Dinjens WN. Breast cancer in an MSH2 gene mutation carrier. Hum Pathol. 2005;36:1322–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Risinger JI, Barrett JC, Watson P, Lynch HT, Boyd J. Molecular genetic evidence of the occurrence of breast cancer as an integral tumor in patients with the hereditary nonpolyposis colorectal carcinoma syndrome. Cancer. 1996;77:1836–43.PubMedCrossRefGoogle Scholar
  93. 93.
    Nelson CL, Sellers TA, Rich SS, Potter JD, McGovern PG, Kushi LH. Familial clustering of colon, breast, uterine, and ovarian cancers as assessed by family history. Genet Epidemiol. 1993;10:235–44.PubMedCrossRefGoogle Scholar
  94. 94.
    de Leeuw WJ, van Puijenbroek M, Tollenaar RA, et al. Exclusion of breast cancer as an integral tumor of hereditary nonpolyposis colorectal cancer. Cancer Res. 2003;62:1014–1019. Cancer Res 2003;63:1148–9.Google Scholar
  95. 95.
    Boyd J, Rhei E, Federici MG, et al. Male breast cancer in the hereditary nonpolyposis colorectal cancer syndrome. Breast Cancer Res Treat. 1999;53:87–91.PubMedCrossRefGoogle Scholar
  96. 96.
    Watson P, Vasen HF, Mecklin JP, et al. The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. Int J Cancer. 2008;123:444–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer statistics, 2003. CA Cancer J Clin. 2003;53:5–26.PubMedCrossRefGoogle Scholar
  98. 98.
    Broaddus RR, Lynch PM, Lu KH, Luthra R, Michelson SJ. Unusual tumors associated with the hereditary nonpolyposis colorectal cancer syndrome. Mod Pathol. 2004;17:981–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Sijmons R, Hofstra R, Hollema H, et al. Inclusion of malignant fibrous histiocytoma in the tumour spectrum associated with hereditary non-polyposis colorectal cancer. Genes Chromosomes Cancer. 2000;29:353–5.PubMedCrossRefGoogle Scholar
  100. 100.
    den Bakker MA, Seynaeve C, Kliffen M, Dinjens WN. Microsatellite instability in a pleomorphic rhabdomyosarcoma in a patient with hereditary non-polyposis colorectal cancer. Histopathology. 2003;43:297–9.CrossRefGoogle Scholar
  101. 101.
    Kawaguchi K, Oda Y, Takahira T, et al. Microsatellite instability and hMLH1 and hMSH2 expression analysis in soft tissue sarcomas. Oncol Rep. 2005;13:241–6.PubMedGoogle Scholar
  102. 102.
    Suwa K, Ohmori M, Miki H. Microsatellite alterations in various sarcomas in Japanese patients. J Orthop Sci. 1999;4:223–30.PubMedCrossRefGoogle Scholar
  103. 103.
    Soravia C, van der Klift H, Brundler MA, et al. Prostate cancer is part of the hereditary non-polyposis colorectal cancer (HNPCC) tumor spectrum. Am J Med Genet. 2003;121A:159–62.PubMedCrossRefGoogle Scholar
  104. 104.
    Gallinger S, Aronson M, Shayan K, et al. Gastrointestinal cancers and neurofibromatosis type 1 features in children with a germline homozygous MLH1 mutation. Gastroenterology. 2004;126:576–85.PubMedCrossRefGoogle Scholar
  105. 105.
    Meyer LA, Broaddus RR, Lu KH. Endometrial cancer and Lynch syndrome: clinical and pathologic considerations. Cancer Control. 2009;16:14–22.PubMedGoogle Scholar
  106. 106.
    Garg K, Soslow RA. Lynch syndrome (hereditary non-polyposis colorectal cancer) and endometrial carcinoma. J Clin Pathol. 2009;62:679–84.PubMedCrossRefGoogle Scholar
  107. 107.
    Manchanda R, Menon U, Michaelson-Cohen R, Beller U, Jacobs I. Hereditary non-polyposis colorectal cancer or Lynch syndrome: the gynaecological perspective. Curr Opin Obstet Gynecol. 2009;21:31–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Resnick KE, Hampel H, Fishel R, Cohn DE. Current and emerging trends in Lynch syndrome identification in women with endometrial cancer. Gynecol Oncol. 2009;114:128–34.PubMedCrossRefGoogle Scholar
  109. 109.
    Taylor N, Mutch DG. Gynecologic manifestations of hereditary nonpolyposis colorectal cancer. From inherited to sporadic disease. Oncology (Williston Park). 2006;20:85–94.Google Scholar
  110. 110.
    Prat J, Ribe A, Gallardo A. Hereditary ovarian cancer. Hum Pathol. 2005;36:861–70.PubMedCrossRefGoogle Scholar
  111. 111.
    Watson P, Lynch HT. Cancer risk in mismatch repair gene mutation carriers. Fam Cancer. 2001;1:57–60.PubMedCrossRefGoogle Scholar
  112. 112.
    Lu KH, Dinh M, Kohlmann W, et al. Gynecologic cancer as a “sentinel cancer” for women with hereditary nonpolyposis colorectal cancer syndrome. Obstet Gynecol. 2005;105:569–74.PubMedCrossRefGoogle Scholar
  113. 113.
    Obermair A, Youlden DR, Young JP, et al. Risk of endometrial cancer for women diagnosed with HNPCC-related colorectal carcinoma. Int J Cancer. 2010;127:2678–84.PubMedCrossRefGoogle Scholar
  114. 114.
    Chadwick RB, Pyatt RE, Niemann TH, et al. Hereditary and somatic DNA mismatch repair gene mutations in sporadic endometrial carcinoma. J Med Genet. 2001;38:461–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Banno K, Susumu N, Yanokura M, et al. Association of HNPCC and endometrial cancers. Int J Clin Oncol. 2004;9:262–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Lu KH, Schorge JO, Rodabaugh KJ, et al. Prospective determination of prevalence of lynch syndrome in young women with endometrial cancer. J Clin Oncol. 2007;25:5158–64.PubMedCrossRefGoogle Scholar
  117. 117.
    Resnick K, Straughn JM Jr, Backes F, Hampel H, Matthews KS, Cohn DE. Lynch syndrome screening strategies among newly diagnosed endometrial cancer patients. Obstet Gynecol. 2009;114:530–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Goodfellow PJ, Buttin BM, Herzog TJ, et al. Prevalence of defective DNA mismatch repair and MSH6 mutation in an unselected series of endometrial cancers. Proc Natl Acad Sci USA. 2003;100:5908–13.PubMedCrossRefGoogle Scholar
  119. 119.
    Boks DE, Trujillo AP, Voogd AC, Morreau H, Kenter GG, Vasen HF. Survival analysis of endometrial carcinoma associated with hereditary nonpolyposis colorectal cancer. Int J Cancer. 2002;102:198–200.PubMedCrossRefGoogle Scholar
  120. 120.
    MacDonald ND, Salvesen HB, Ryan A, Iversen OE, Akslen LA, Jacobs IJ. Frequency and prognostic impact of microsatellite instability in a large population-based study of endometrial carcinomas. Cancer Res. 2000;60:1750–2.PubMedGoogle Scholar
  121. 121.
    Basil JB, Goodfellow PJ, Rader JS, Mutch DG, Herzog TJ. Clinical significance of microsatellite instability in endometrial carcinoma. Cancer. 2000;89:1758–64.PubMedCrossRefGoogle Scholar
  122. 122.
    Caduff RF, Johnston CM, Svoboda-Newman SM, Poy EL, Merajver SD, Frank TS. Clinical and pathological significance of microsatellite instability in sporadic endometrial carcinoma. Am J Pathol. 1996;148:1671–8.PubMedGoogle Scholar
  123. 123.
    Maxwell GL, Risinger JI, Alvarez AA, Barrett JC, Berchuck A. Favorable survival associated with microsatellite instability in endometrioid endometrial cancers. Obstet Gynecol. 2001;97:417–22.PubMedCrossRefGoogle Scholar
  124. 124.
    Garg K, Leitao MM Jr, Kauff ND, et al. Selection of endometrial carcinomas for DNA mismatch repair protein immunohistochemistry using patient age and tumor morphology enhances detection of mismatch repair abnormalities. Am J Surg Pathol. 2009;33:925–33.PubMedCrossRefGoogle Scholar
  125. 125.
    Shia J, Black D, Hummer AJ, Boyd J, Soslow RA. Routinely assessed morphological features correlate with microsatellite instability status in endometrial cancer. Hum Pathol. 2008;39: 116–25.PubMedCrossRefGoogle Scholar
  126. 126.
    van den Bos M, van den Hoven M, Jongejan E, et al. More differences between HNPCC-related and sporadic carcinomas from the endometrium as compared to the colon. Am J Surg Pathol. 2004;28:706–11.PubMedCrossRefGoogle Scholar
  127. 127.
    Walsh MD, Cummings MC, Buchanan DD, et al. Molecular, pathologic, and clinical features of early-onset endometrial cancer: identifying presumptive Lynch syndrome patients. Clin Cancer Res. 2008;14:1692–700.PubMedCrossRefGoogle Scholar
  128. 128.
    Carcangiu ML, Radice P, Casalini P, Bertario L, Merola M, Sala P. Lynch syndrome–related endometrial carcinomas show a high frequency of nonendometrioid types and of high FIGO grade endometrioid types. Int J Surg Pathol. 2010;18:21–6.PubMedCrossRefGoogle Scholar
  129. 129.
    Broaddus RR, Lynch HT, Chen LM, et al. Pathologic features of endometrial carcinoma associated with HNPCC: a comparison with sporadic endometrial carcinoma. Cancer. 2006;106:87–94.PubMedCrossRefGoogle Scholar
  130. 130.
    Westin SN, Lacour RA, Urbauer DL, et al. Carcinoma of the lower uterine segment: a newly described association with Lynch syndrome. J Clin Oncol. 2008;26:5965–71.PubMedCrossRefGoogle Scholar
  131. 131.
    Ramsoekh D, Wagner A, van Leerdam ME, et al. Cancer risk in MLH1, MSH2 and MSH6 mutation carriers; different risk profiles may influence clinical management. Hered Cancer Clin Pract. 2009;7:17.PubMedCrossRefGoogle Scholar
  132. 132.
    Senter L, Clendenning M, Sotamaa K, et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology. 2008;135:419–28.PubMedCrossRefGoogle Scholar
  133. 133.
    Greggi S, Genuardi M, Benedetti-Panici P, et al. Analysis of 138 consecutive ovarian cancer patients: incidence and characteristics of familial cases. Gynecol Oncol. 1990;39:300–4.PubMedCrossRefGoogle Scholar
  134. 134.
    Bewtra C, Watson P, Conway T, Read-Hippee C, Lynch HT. Hereditary ovarian cancer: a clinicopathological study. Int J Gynecol Pathol. 1992;11:180–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Pal T, Permuth-Wey J, Sellers TA. A review of the clinical relevance of mismatch-repair deficiency in ovarian cancer. Cancer. 2008;113:733–42.PubMedCrossRefGoogle Scholar
  136. 136.
    Crijnen TE, Janssen-Heijnen ML, Gelderblom H, et al. Survival of patients with ovarian cancer due to a mismatch repair defect. Fam Cancer. 2005;4:301–5.PubMedCrossRefGoogle Scholar
  137. 137.
    Seidman JD, Horkayne-Szakaly I, Haiba M, Boice CR, Kurman RJ, Ronnett BM. The histologic type and stage distribution of ovarian carcinomas of surface epithelial origin. Int J Gynecol Pathol. 2004;23:41–4.PubMedCrossRefGoogle Scholar
  138. 138.
    Quirk JT, Natarajan N. Ovarian cancer incidence in the United States, 1992–1999. Gynecol Oncol. 2005;97:519–23.PubMedCrossRefGoogle Scholar
  139. 139.
    Pal T, Permuth-Wey J, Kumar A, Sellers TA. Systematic review and meta-analysis of ovarian cancers: estimation of microsatellite-high frequency and characterization of mismatch repair deficient tumor histology. Clin Cancer Res. 2008;14:6847–54.PubMedCrossRefGoogle Scholar
  140. 140.
    Capelle LG, Van Grieken NC, Lingsma HF, et al. Risk and epidemiological time trends of gastric cancer in Lynch syndrome carriers in the Netherlands. Gastroenterology. 2010;138:487–92.PubMedCrossRefGoogle Scholar
  141. 141.
    Aarnio M, Salovaara R, Aaltonen LA, Mecklin JP, Jarvinen HJ. Features of gastric cancer in hereditary non-polyposis colorectal cancer syndrome. Int J Cancer. 1997;74:551–5.PubMedCrossRefGoogle Scholar
  142. 142.
    Lehtola J. Family study of gastric carcinoma; with special reference to histological types. Scand J Gastroenterol Suppl. 1978;50: 3–54.PubMedGoogle Scholar
  143. 143.
    Lynch HT, Grady W, Suriano G, Huntsman D. Gastric cancer: new genetic developments. J Surg Oncol. 2005;90:114–33. discussion 133.PubMedCrossRefGoogle Scholar
  144. 144.
    Lauren PA, Nevalainen TJ. Epidemiology of intestinal and diffuse types of gastric carcinoma. A time-trend study in Finland with comparison between studies from high- and low-risk areas. Cancer. 1993;71:2926–33.PubMedCrossRefGoogle Scholar
  145. 145.
    Mecklin JP, Jarvinen HJ, Virolainen M. The association between cholangiocarcinoma and hereditary nonpolyposis colorectal carcinoma. Cancer. 1992;69:1112–4.PubMedCrossRefGoogle Scholar
  146. 146.
    Vernez M, Hutter P, Monnerat C, Halkic N, Gugerli O, Bouzourene H. A case of Muir-Torre syndrome associated with mucinous hepatic cholangiocarcinoma and a novel germline mutation of the MSH2 gene. Fam Cancer. 2007;6:141–5.PubMedCrossRefGoogle Scholar
  147. 147.
    Koornstra JJ, Kleibeuker JH, Vasen HF. Small-bowel cancer in Lynch syndrome: is it time for surveillance? Lancet Oncol. 2008;9:901–5.PubMedCrossRefGoogle Scholar
  148. 148.
    Rodriguez-Bigas MA, Vasen HF, Lynch HT, et al. Characteristics of small bowel carcinoma in hereditary nonpolyposis colorectal carcinoma. International Collaborative Group on HNPCC. Cancer. 1998;83:240–4.PubMedCrossRefGoogle Scholar
  149. 149.
    Schulmann K, Brasch FE, Kunstmann E, et al. HNPCC-associated small bowel cancer: clinical and molecular characteristics. Gastroenterology. 2005;128:590–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Watson P, Lynch HT. The tumor spectrum in HNPCC. Anticancer Res. 1994;14:1635–9.PubMedGoogle Scholar
  151. 151.
    Maul JS, Warner NR, Kuwada SK, Burt RW, Cannon-Albright LA. Extracolonic cancers associated with hereditary nonpolyposis colorectal cancer in the Utah Population Database. Am J Gastroenterol. 2006;101:1591–6.PubMedCrossRefGoogle Scholar
  152. 152.
    Roupret M, Yates DR, Comperat E, Cussenot O. Upper urinary tract urothelial cell carcinomas and other urological malignancies involved in the hereditary nonpolyposis colorectal cancer (lynch syndrome) tumor spectrum. Eur Urol. 2008;54:1226–36.PubMedCrossRefGoogle Scholar
  153. 153.
    Catto JW, Azzouzi AR, Amira N, et al. Distinct patterns of microsatellite instability are seen in tumours of the urinary tract. Oncogene. 2003;22:8699–706.PubMedCrossRefGoogle Scholar
  154. 154.
    Sarin S, Bernath A. Turcot syndrome (glioma polyposis): a case report. South Med J. 2008;101:1273–4.PubMedCrossRefGoogle Scholar
  155. 155.
    Hamilton SR, Liu B, Parsons RE, et al. The molecular basis of Turcot’s syndrome. N Engl J Med. 1995;332:839–47.PubMedCrossRefGoogle Scholar
  156. 156.
    Torre D. Multiple sebaceous tumors. Arch Dermatol. 1968;98: 549–51.PubMedCrossRefGoogle Scholar
  157. 157.
    Muir EG, Bell AJ, Barlow KA. Multiple primary carcinomata of the colon, duodenum, and larynx associated with kerato-acanthomata of the face. Br J Surg. 1967;54:191–5.PubMedCrossRefGoogle Scholar
  158. 158.
    Lynch HT, Lynch PM, Pester J, Fusaro RM. The cancer family syndrome. Rare cutaneous phenotypic linkage of Torre’s syndrome. Arch Intern Med. 1981;141:607–11.PubMedCrossRefGoogle Scholar
  159. 159.
    South CD, Hampel H, Comeras I, Westman JA, Frankel WL, de la Chapelle A. The frequency of Muir-Torre syndrome among Lynch syndrome families. J Natl Cancer Inst. 2008;100:277–81.PubMedCrossRefGoogle Scholar
  160. 160.
    Mangold E, Pagenstecher C, Leister M, et al. A genotype-phenotype correlation in HNPCC: strong predominance of msh2 mutations in 41 patients with Muir-Torre syndrome. J Med Genet. 2004;41:567–72.PubMedCrossRefGoogle Scholar
  161. 161.
    Entius MM, Keller JJ, Drillenburg P, Kuypers KC, Giardiello FM, Offerhaus GJ. Microsatellite instability and expression of hMLH-1 and hMSH-2 in sebaceous gland carcinomas as markers for Muir-Torre syndrome. Clin Cancer Res. 2000;6:1784–9.PubMedGoogle Scholar
  162. 162.
    Mathiak M, Rutten A, Mangold E, et al. Loss of DNA mismatch repair proteins in skin tumors from patients with Muir-Torre syndrome and MSH2 or MLH1 germline mutations: establishment of immunohistochemical analysis as a screening test. Am J Surg Pathol. 2002;26:338–43.PubMedCrossRefGoogle Scholar
  163. 163.
    Lancaster JM, Powell CB, Kauff ND, et al. Society of Gynecologic Oncologists Education Committee statement on risk assessment for inherited gynecologic cancer predispositions. Gynecol Oncol. 2007;107:159–62.PubMedCrossRefGoogle Scholar
  164. 164.
    Mojtahed A, Schrijver I, Ford JM, Longacre TA, Pai RK. A two-antibody mismatch repair protein immunohistochemistry ­screening approach for colorectal carcinomas, skin sebaceous tumors, and gynecologic tract carcinomas. Mod Pathol. 2011;24: 1004–14.PubMedCrossRefGoogle Scholar
  165. 165.
    Dove-Edwin I, Boks D, Goff S, et al. The outcome of endometrial carcinoma surveillance by ultrasound scan in women at risk of hereditary nonpolyposis colorectal carcinoma and familial colorectal carcinoma. Cancer. 2002;94:1708–12.PubMedCrossRefGoogle Scholar
  166. 166.
    Rijcken FE, Mourits MJ, Kleibeuker JH, Hollema H, van der Zee AG. Gynecologic screening in hereditary nonpolyposis colorectal cancer. Gynecol Oncol. 2003;91:74–80.PubMedCrossRefGoogle Scholar
  167. 167.
    Renkonen-Sinisalo L, Butzow R, Leminen A, Lehtovirta P, Mecklin JP, Jarvinen HJ. Surveillance for endometrial cancer in hereditary nonpolyposis colorectal cancer syndrome. Int J Cancer. 2007;120:821–4.PubMedCrossRefGoogle Scholar
  168. 168.
    Lecuru F, Metzger U, Scarabin C, Le Frere Belda MA, Olschwang S, Laurent Puig P. Hysteroscopic findings in women at risk of HNPCC. Results of a prospective observational study. Fam Cancer. 2007;6:295–9.PubMedCrossRefGoogle Scholar
  169. 169.
    Lecuru F, Le Frere Belda MA, Bats AS, et al. Performance of office hysteroscopy and endometrial biopsy for detecting ­endometrial disease in women at risk of human non-polyposis colon cancer: a prospective study. Int J Gynecol Cancer. 2008;18: 1326–31.PubMedCrossRefGoogle Scholar
  170. 170.
    Lynch HT, Boland CR, Rodriguez-Bigas MA, Amos C, Lynch JF, Lynch PM. Who should be sent for genetic testing in hereditary colorectal cancer syndromes? J Clin Oncol. 2007;25:3534–42.PubMedCrossRefGoogle Scholar
  171. 171.
    Bonis PA, Ahnen DJ, Axell L. Screening strategies in patients and families with familial colon cancer syndromes. In: Basow DE (Ed) UpToDate. Waltham, MA. 2008.Google Scholar
  172. 172.
    Doxey BW, Kuwada SK, Burt RW. Inherited polyposis syndromes: molecular mechanisms, clinicopathology, and genetic testing. Clin Gastroenterol Hepatol. 2005;3:633–41.PubMedCrossRefGoogle Scholar
  173. 173.
    Lynch HT, Lynch JF, Shaw TG. Hereditary gastrointestinal cancer syndromes. Gastrointest Cancer Res. 2011;4:S9-S17.PubMedGoogle Scholar
  174. 174.
    Galiatsatos P, Foulkes WD. Familial adenomatous polyposis. Am J Gastroenterol. 2006;101:385–98.PubMedCrossRefGoogle Scholar
  175. 175.
    Hofgartner WT, Thorp M, Ramus MW, et al. Gastric adenocarcinoma associated with fundic gland polyps in a patient with attenuated familial adenomatous polyposis. Am J Gastroenterol. 1999;94:2275–81.PubMedCrossRefGoogle Scholar
  176. 176.
    Ahnen DJ, Axell L. Clinical features and diagnosis of familial adenomatous polyposis. UpToDate, Basow DS (Ed), Waltham, MA. 2008.Google Scholar
  177. 177.
    Abraham SC, Park SJ, Mugartegui L, Hamilton SR, Wu TT. Sporadic fundic gland polyps with epithelial dysplasia: evidence for preferential targeting for mutations in the adenomatous polyposis coli gene. Am J Pathol. 2002;161:1735–42.PubMedCrossRefGoogle Scholar
  178. 178.
    Lam-Himlin D, Park JY, Cornish TC, Shi C, Montgomery E. Morphologic characterization of syndromic gastric polyps. Am J Surg Pathol. 2010;34:1656–62.PubMedGoogle Scholar
  179. 179.
    Lynch PM. Prevention of colorectal cancer in high-risk populations: the increasing role for endoscopy and chemoprevention in FAP and HNPCC. Digestion. 2007;76:68–76.PubMedCrossRefGoogle Scholar
  180. 180.
    Lipton L, Tomlinson I. The genetics of FAP and FAP-like syndromes. Fam Cancer. 2006;5:221–6.PubMedCrossRefGoogle Scholar
  181. 181.
    Rustgi AK. The genetics of hereditary colon cancer. Genes Dev. 2007;21:2525–38.PubMedCrossRefGoogle Scholar
  182. 182.
    Bodmer WF, Bailey CJ, Bodmer J, et al. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature. 1987;328:614–6.PubMedCrossRefGoogle Scholar
  183. 183.
    Kinzler KW, Nilbert MC, Su LK, et al. Identification of FAP locus genes from chromosome 5q21. Science. 1991;253:661–5.PubMedCrossRefGoogle Scholar
  184. 184.
    Groden J, Thliveris A, Samowitz W, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66:589–600.PubMedCrossRefGoogle Scholar
  185. 185.
    Schulmann K, Pox C, Tannapfel A, Schmiegel W. The patient with multiple intestinal polyps. Best Pract Res Clin Gastroenterol. 2007;21:409–26.PubMedCrossRefGoogle Scholar
  186. 186.
    Ahnen DJ. The genetic basis of colorectal cancer risk. Adv Intern Med. 1996;41:531–52.PubMedGoogle Scholar
  187. 187.
    Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis. 2009;4:22.PubMedCrossRefGoogle Scholar
  188. 188.
    Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev. 2007;17:45–51.PubMedCrossRefGoogle Scholar
  189. 189.
    Aoki K, Aoki M, Sugai M, et al. Chromosomal instability by beta-catenin/TCF transcription in APC or beta-catenin mutant cells. Oncogene. 2007;26:3511–20.PubMedCrossRefGoogle Scholar
  190. 190.
    Schneikert J, Behrens J. The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut. 2007;56:417–25.PubMedCrossRefGoogle Scholar
  191. 191.
    Senda T, Iizuka-Kogo A, Onouchi T, Shimomura A. Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Med Mol Morphol. 2007;40:68–81.PubMedCrossRefGoogle Scholar
  192. 192.
    Abdel-Rahman WM, Peltomaki P. Molecular basis and diagnostics of hereditary colorectal cancers. Ann Med. 2004;36:379–88.PubMedCrossRefGoogle Scholar
  193. 193.
    Segditsas S, Tomlinson I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene. 2006;25:7531–7.PubMedCrossRefGoogle Scholar
  194. 194.
    Nieuwenhuis MH, Vasen HF. Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): a review of the literature. Crit Rev Oncol Hematol. 2007;61:153–61.PubMedCrossRefGoogle Scholar
  195. 195.
    Rozen P, Macrae F. Familial adenomatous polyposis: the practical applications of clinical and molecular screening. Fam Cancer. 2006;5:227–35.PubMedCrossRefGoogle Scholar
  196. 196.
    Hegde MR, Roa BB (2006) Detecting mutations in the APC gene in familial adenomatous polyposis (FAP). Curr Protoc Hum Genet 2006; Chapter 10: Unit 10 8.Google Scholar
  197. 197.
    Michils G, Tejpar S, Thoelen R, et al. Large deletions of the APC gene in 15% of mutation-negative patients with classical polyposis (FAP): a Belgian study. Hum Mutat. 2005;25:125–34.PubMedCrossRefGoogle Scholar
  198. 198.
    Nielsen M, Hes FJ, Nagengast FM, et al. Germline mutations in APC and MUTYH are responsible for the majority of families with attenuated familial adenomatous polyposis. Clin Genet. 2007;71:427–33.PubMedCrossRefGoogle Scholar
  199. 199.
    Hes FJ, Nielsen M, Bik EC, et al. Somatic APC mosaicism: an underestimated cause of polyposis coli. Gut. 2008;57:71–6.PubMedCrossRefGoogle Scholar
  200. 200.
    Romero-Gimenez J, Dopeso H, Blanco I, et al. Germline hypermethylation of the APC promoter is not a frequent cause of familial adenomatous polyposis in APC/MUTYH mutation negative families. Int J Cancer. 2008;122:1422–5.PubMedCrossRefGoogle Scholar
  201. 201.
    Renkonen ET, Nieminen P, Abdel-Rahman WM, et al. Adenomatous polyposis families that screen APC mutation-negative by conventional methods are genetically heterogeneous. J Clin Oncol. 2005;23:5651–9.PubMedCrossRefGoogle Scholar
  202. 202.
    Al-Tassan N, Chmiel NH, Maynard J, et al. Inherited variants of MYH associated with somatic G:C–  >  T:A mutations in colorectal tumors. Nat Genet. 2002;30:227–32.PubMedCrossRefGoogle Scholar
  203. 203.
    Poulsen ML, Bisgaard ML. MUTYH Associated Polyposis (MAP). Curr Genomics. 2008;9:420–35.PubMedCrossRefGoogle Scholar
  204. 204.
    Gala M, Chung DC. Hereditary colon cancer syndromes. Semin Oncol. 2011;38:490–9.PubMedCrossRefGoogle Scholar
  205. 205.
    Cheadle JP, Sampson JR. MUTYH-associated polyposis–from defect in base excision repair to clinical genetic testing. DNA Repair (Amst). 2007;6:274–9.CrossRefGoogle Scholar
  206. 206.
    Lu AL, Bai H, Shi G, Chang DY. MutY and MutY homologs (MYH) in genome maintenance. Front Biosci. 2006;11:3062–80.PubMedCrossRefGoogle Scholar
  207. 207.
    Parker AR, Eshleman JR. Human MutY: gene structure, protein functions and interactions, and role in carcinogenesis. Cell Mol Life Sci. 2003;60:2064–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pathology and ImmunologyWashington UniversitySt. LouisUSA
  2. 2.Department of Pathology & Cell BiologyColumbia UniversityNew YorkUSA

Personalised recommendations